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The Klein-Gordon Maxwell system (KGM)

We start by presenting the fully coupled Klein-Gordon Maxwell system,
all following quantities are functions of time and spatial position where
pt, xq P Rd ˆ R` with d P t1, 3u.

´ 1
c2

B2
t ψ`∆ψ` ie

ℏc2
pBtϕ`ϕBtqψ´ ie

ℏ p∇¨A⃗`A⃗∇qψ` e2

ℏ2 p
ϕ2

c2
´A⃗2qψ´m2c2

ℏ2 ψ“0, (1)
ℏe
mc2 piψ̄Btψ´iψBt ψ̄`2 e

ℏ ψ̄ϕψq“ρ, (2)
ℏe
m p´iψ̄∇ψ`iψ∇ψ̄´2 e

ℏ ψ̄A⃗ψq“J⃗, (3)
1
c2

B2
t ϕ´∆ϕ“

ρ
ϵ0
, (4)

1
c2

B2
t A⃗´∆A⃗“µ0J⃗“ 1

ϵ0c2
J⃗. (5)

We will treat the system as an initial value problem (IVP) with the
following set of initial data

$

’

&

’

%

ψp0, xq “ ψ0, Btψp0, xq “ ψ1

ϕp0, xq “ ϕ0, Btϕp0, xq “ ϕ1,

A⃗p0, xq “ A⃗0, BtA⃗p0, xq “ A⃗1.

(6)
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Electromagnetic gauge

Due to the gauge freedom in electromagnetism we demand the
Lorentz Gauge condition for our electromagnetic potentials ϕ and A⃗

Btϕ` ∇A⃗ “ 0. (7)

This yields that the Maxwell equations both become inhomogeneous
wave equations.
We additionally force the initial condition of our system to satisfy (7).
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Briefly physical background

The Klein-Gordon Maxwell system can be boiled down to two
ingredients.

The Klein-Gordon equation which describes spin-0 particles.
The Maxwell equations which describes the interaction with the
electromagnetic force.

What particles can be described by the Klein-Gordon Maxwell system?

There is no elementary charged spin-0 particle in the Standard model.
But one can consider composed elementary particles!

The Pion ( π`): It has a to-
tal spin of 0 (every other me-
son too) and an electric charge
of e “ `1, it consists of an up
quark, an anti-down quark and
is held together by gluons.
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Relation to relativistic quantum plasma

A plasma is a "hot" phase of matter where the electrons have
detached themselves from the nucleis, i.e. it is a huge collection of
fermions, but they are spin-1

2 particles...
Usually charged fermions are described by the Dirac-Maxwell system.
But the models relative complexity compared to the (scalar)
Klein-Gordon Maxwell system is much greater. ùñ Describe a
quantum plasma with Klein-Gordon Maxwell instead.

For a laser beam solid - object interaction experiment using Peta-Watt
lasers in order to produce the plasma, the main source of nonlinear
interactions is via the ponderomotive force, while the electron spin- 1

2
effect comes in as a perturbation (Eliasson and P. K. Shukla 2011).
Or describe plasmas in situations where spin does not matter
(Mendonca 2011; Haas, Eliasson, and P. Shukla 2012).

6



Charge conservation of the system

Multiply (1) from the left side with ψ̄ and subtract the complex
conjugated from it, this implies the continuity equation

Btρ` ∇ ¨ J⃗ “ 0. (8)

By virtue of the local conservation law
Btρpt, xq “ ∇ ¨ ~Jpt, xq @pt, xq P R ˆ R3, we can deduce a global
conservation of the charge Q. Therefore we integrate over the whole
space and obtain

0 “

ż

R3
Btρpt, xq ´ ∇ ¨ ~Jpt, xq “

ż

R3
Btρpt, xq “ Bt

ż

R3
ρpt, xq

loooomoooon

“:Qptq

.
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Energy conservation of the system

The energy functional is given by

E ptq “

ż

R3
|iϵBtψ ´ iϕψ|

2
`

ˇ

ˇ

ˇ
iϵ∇ψ ` i A⃗ψ

ˇ

ˇ

ˇ

2
` |ψ|

2

loooooooooooooooooooooooomoooooooooooooooooooooooon

particle energy density ϵp

`
1
2

ˇ

ˇ

ˇ
´∇ϕ´ BtA⃗

ˇ

ˇ

ˇ

2
`

1
2

ˇ

ˇ

ˇ
∇ ˆ A⃗

ˇ

ˇ

ˇ

2
.

looooooooooooooooooomooooooooooooooooooon

electromagnetic field energy density ϵf

(9)

During the time evolution it is conserved as long as there are external
forces, i.e.

Btϕextpt, xq “ BtA⃗extpt, xq “ 0.
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Scaling of the system

In order to describe the MKG system free of any intrinsic scales we
introduce the following practicable length and time scale

x̄ “
e2

mϵ0c2 , t̄ “
x̄

c
.

In addition we demand that our fields transform in the following
manner:

ψpx , tq Ñ x̄´3{2ψpx̃ , t̃q

ϕpx , tq Ñ cλϕpx̃ , t̃q, A⃗px , tq Ñ λA⃗px̃ , t̃q with λ “
mc

e
.
After this transformation the equations are free of any intrinsic scale,
they only depend on a dimensionless parameter

ϵ “
ℏϵ0c
e2 .

9



Scaling of the system

We can rewrite the Klein-Gordon Maxwell system in a dimensionless way,
where ˜̈ denotes a dimensionless quantity

ϵ2
´

´B̃2
t `∆̃

¯

ψ̃´iϵ
´

B̃t ϕ̃`ϕ̃B̃t`∇̃ ˜⃗
A`

˜⃗
A∇̃

¯

ψ̃`

´

ϕ̃2´
˜⃗
A2´1

¯

ψ̃“0, (10)

iϵ
´

¯̃ψB̃tψ̃ ´ ψ̃B̃t
¯̃ψ
¯

´ 2
´

¯̃ψϕ̃ψ̃
¯

“ ρ̃, (11)

´iϵ
´

¯̃ψ∇̃ψ̃ ´ ψ̃∇̃ ¯̃ψ
¯

´ 2
´

¯̃ψ
˜⃗
Aψ̃

¯

“
˜⃗
J. (12)

´

B̃2
t ´ ∆̃

¯

ϕ̃ “ ρ̃, (13)
´

B̃2
t ´ ∆̃

¯

˜⃗
A “

˜⃗
J. (14)
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Discretization

We consider our system on a finite time interval r0,T s in a cubic
bounded domain with side length L,

Ω “

!

x “ px1, x2, x3q| ´
L

2
ď xi ď

L

2
, i “ 1, 2, 3

)

.

For the discretization we choose M,N P N with i “ 1, 2, 3 and define
the spatial mesh in the xi -direction as ∆xi “ L{M, with

xm “ px1m1 , x2,m2 , x3,m3q , with xi ,m “ ´
L

2
` m∆xi ,

and denote the time steps by

tn “ n∆t, with 0 ď n ď N.

We impose periodic boundary conditions.
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Notation and conventions

A compact notation to denote arrays of function values evaluated at
each spatial grid point at a certain time n∆t is given by ψn, ϕn and
A⃗n.
In the following we will illustrate all numerical schemes in a semi
discritized way.
And note that all spatial derivatives will be implemented as spectral
derivatives on the computer.
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Operator splitting scheme (OSS)

We reformulate the electromagnetic KG equation (10) in the
framework of Hamiltonian theory (Feshbach and Villars 1958)

ψ “

ˆ1
2 pψ ` piϵBt ´ ϕqψq
1
2 pψ ´ piϵBt ´ ϕqψq

˙

, (15)

and find that the corresponding equation reads

iϵBtψ “ Hψ :“

ˆ

1
2

pτ3 ` iτ2qp´iϵ∇ ´ Aq2 ` 1ϕ` τ3

˙

ψ. (16)

For splitting the equation we divide the Hamiltonian as follows

H “ τ3 ` 1ϕn
looomooon

H1

´
1
2

pτ3 ` iτ2qϵ2∆
looooooooomooooooooon

H2

`
1
2
iϵpτ3 ` iτ2qp∇A⃗ ` A⃗n∇q

looooooooooooooomooooooooooooooon

H3

`
1
2

pτ3 ` iτ2q

´

A⃗
¯2

looooooooomooooooooon

H4

.
(17)
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Operator splitting scheme (OSS)

Where τi , i P t1, 2, 3u, denoting the three Pauli matrices in their
standard representation as skew hermitian 2 ˆ 2-matrices

τ1 “

ˆ

0 1
1 0

˙

, τ2 “

ˆ

0 ´i
i 0

˙

, τ3 “

ˆ

1 0
0 ´1

˙

which satisfy the usual relations

τiτj “ iϵi ,j ,kτk ` 1,
rτi , τj s “ 2iϵi ,j ,k ,
tτi , τju “ 2 1.

and 1 denotes the 2 ˆ 2 identity matrix.
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Operator splitting scheme (OSS)

The corresponding time evolution operators for the individual parts of
the Hamiltonian H are given by

Uk “ e´ i
ϵ

şt`∆t
t Hk px ,sqds .

Note that H1 is an diagonal matrix and therefore the matrix
exponential U1 is easy to compute.
pτ3 ` iτ2q isn’t a diagonal matrix but fortunately it is nilpotent of order
two. This truncates the exponential sum in the time evolution operator
after the second term and they can be expressed exact, yielding

U2 “ 1 `
1
2
ipτ3 ` iτ2qϵ2∆,

U3 “ 1 `
1
2

pτ3 ` iτ2qp∇A⃗ ` A⃗∇q,

U4 “ 1 ´
1
2
iϵ´1pτ3 ` iτ2qA2.
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Crank-Nicolson scheme (CNS)

We solve the Maxwell equations (13) and (14) which are of the form
`

B2
t ´ ∆

˘

f pt, xq “ F pt, xq

with a Crank-Nicolson method.
The scheme (in time discretization) reads

´

1`∆t2 ∆
4

¯

¨

˝

f̂ n`1

Bt f̂
n`1

˛

‚“

¨

˝

1 ´ ∆t2 ∆
4 ∆t

´∆t∆ 1 ´ ∆t2 ∆
4

˛

‚

¨

˝

f̂ n

Bt f̂
n

˛

‚`

¨

˝

∆t2

4
∆t
2

˛

‚pF̂ n`F̂ n`1q,

(18)
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Relaxation of the electric potential

To update the electric potential we need to take care of the implicit
occurrence of the potential in ψ due to the definition in (15).
Therefore we define ρ̃ :“ ρ` 2|ψ|2ϕ where we approximate

ρ̃n «
ρ̃n`1{2 ` ρ̃n´1{2

2
.

We replace the source terms in the Maxwell equation for the eclectic
potential by

ρn`1 ` ρn :“ 2ρ̃n`1{2 ´ 2|ψn|2ϕn ´ 2|ψn`1|2ϕn`1

. Finally we solve the CNS scheme (18) for ϕn`1 according to (Besse
2005).
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The algorithm in a nutshell

Algorithm 1: Time propagation using Lorentz gauge

Data: Given: N,
ψ0 “ ψ0, Btψ

0 “ ψ1, ϕ
0 “ ϕ0, Btϕ

0 “ ϕ1, A⃗
0 “ A⃗0, BtA⃗

0 “ A⃗1
Result: ψN , Btψ

N , ϕN , Btϕ
N , A⃗N , BtA⃗

N

1 while n “ 0 ď N do
2 Update the wavfeunction with Strang splitting

ψn`1 “ U1p∆t
2 q U2p∆t

2 q U3p∆t
2 q U4p∆tq U3p∆t

2 q U2p∆t
2 q U1p∆t

2 q ψn

to obtain ψn`1 using (OSS) with the fields ϕn and A⃗n ;
3 Calculate ρ̃n :“ ρn ` 2|ψn|2ϕn and obtain ρ̃n`1{2 :“ 2ρ̃n ´ ρ̃n´1{2 ;
4 Obtain ϕn`1 with CNS using ψn and

F n`1 ` F n :“ 2ρ̃n`1{2 ´ 2|ψn|2ϕn ´ 2|ψn`1|2ϕn`1 ;
5 Calculate Jn`1 from ψn`1 and A⃗n ;
6 Obtain A⃗n`1 with CNS using A⃗n and F n`1 ` F n :“ Jn`1 ` Jn ;
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Numerical charge conservation - pseudo norm

A fundamental difference of the Klein-Gordon equation is that its
charge density ρ can be negative.
In order to reflect this physical behavior properly we need a different
tool to describe the conservation of charge

Definition (pseudo inner products)
Let H denote a Hilbert space of wavefunctions, where the inner product on
H is denoted by xψ1|ψ2y and let η be a hermitian operator such that we
say η defines a pseudo inner product, according to

xψ1|ψ2yη “ xψ1|η|ψ2y “

ż

Rn

ψ̄1ηψ2.

And the pseudo norm is defined as

∥ψ∥η
L2 “ xψ|ψyη .
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Numerical charge conservation - pseudo norm

According to the definition of a pseudo inner product we define the
pseudo adjoint of an operator Ω by the relation
ż

Rn

ψ̄1 η Ωψ2 “

ż

Rn

Ω: ψ1η ψ2.

We say that Ω is pseudo hermitian if

η´1 Ω: η “ Ω.

And we call U pseudo unitary if

xUψ1|Uψ2yη “ xψ1|ψ2yη @ψ1, ψ2 P H

and note that U satisfies the relation

η´1 U: η “ U´1.
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Numerical charge conservation - pseudo norm

Lemma

Let H be a pseudo hermitian operator w.r.t. η then

U “ e´iH

is a pseudo unitary operator w.r.t. η.

The idea of the proof is it to show that all Hi with i P t1, 2, 3, 4u are
pseudo hermitian operators ùñ all Ui with i P t1, 2, 3, 4u are pseudo
unitary operators ùñ they conserve the pseudo inner product ùñ

they conserve the pseudo norm.
Note that for η “ τ3 we have

∥ψ∥τ3
L2 :“

ż

Rn

ψ̄τ3ψ “

ż

Rn

ρ “ Q.
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Numerical charge conservation - pseudo norm

The pseudo hermiticiy of the Hi with i P t1, 2, 3, 4u follows by straight
forward calculation and finally implies that

Theorem (∥¨∥τ3L2 Charge Conservation)
The operator splitting scheme conserves the total electric charge Q using
Lie-Trotter and Strang splitting, i.e.

∥ψn∥τ3
L2 “

∥∥ψ0∥∥τ3
L2 “ Q0, @n P N,

where ψn is the vector valued wave function defined in (15) and Q0 is the
initial total charge determined by the initial wave function ψ0.
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Numerical conservation of the Lorentz gauge

Lemma (Conservation of Lorentz gauge)
The Crank-Nicolson scheme (18) preserves the Lorentz gauge condition in
every time step, i.e.

Btϕ` ∇A⃗ “ 0, @n P N. (19)

For more detail see (Huang et al. 2005)
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Rate of convergence in ∆t

(a) 1d (b) 3d
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Work in progress

We are aiming to proof a convergence rate of order p “ 2 in the
L2-norm.
Our strategy is to use the Baker-Campbell-Hausdorff formula and to
estimate all commutators occurring in there. The relevant decisions
are

If we assume that A⃗ is smooth an will be updated between the splitting
step we can shift all regularity towards it and we should be fine.
If we assume that A⃗ is dynamic we expect that the initial data for the
magnetic potential A⃗0 P H6 and the wavefunction ψ0 P H3 will do the
job.
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Relativistic dispersion

We consider a free Gaussian wave packet in the rest frame its initial
data is given by

ψ0pxqp̄“0 “ Ñ
ż

d3p
1

?
E
exp

ˆ

´
p2

2σ2 ´ ipx
˙

.

In order to observe a non symmetric dispersion we boost this wave
packet to the lab frame by choosing p̄ “ 100 in natural units, i.e.

ψpxqp̄“0 Ñ ψpxqp̄ “ Lpp̄qψpxqp̄“0
`

Λ´1pp̄qx
˘

.

The Lorentz boost Λ (along the x-axis) is given by

Λ “

¨

˚

˚

˝

γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

.

26



Relativistic dispersion

The boosted initial data is obtained as

ψ0pxqp̄ “ N
ż

d3p1

?
E 1

b

E 1 ´ cβp1

ˆ

1 ˘ E 1

1 ¯ E 1

˙

exp

˜

´
ppp1q

2

2σ2 ´ ipx

¸

.

where the prime denotes the coordinates in the boosted system. By
inspection the time evolution on spatial dimension we obtain

−4 −2 0 2 4

x̄

10−2

10−1

100

|ψ
|2

[1
/
x̄

]

t =0.01[s̄]

t =0.50[s̄]

t =1.00[s̄]

t =1.50[s̄]

t =2.00[s̄]

c
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