from tidal interactions of galaxies to weak lensing - problem or possibility?

institute seminar, Observatoire de la Côte d'Azur, Nice Björn Malte Schäfer

Centre for Astronomy
Fakultät für Physik und Astronomie, Universität Heidelberg

- weak lensing
- 2 spiral galaxies
- 3 shape spectra
- 4 shape bispectra
- 6 elliptical galaxies
- summary

weak lensing

theory of weak lensing, source: wikipedia

 weak lensing measures fluctuations in the metric by distortions of light bundles from distant galaxies

from tidal interactions of galaxies to weak lensing - problem or possibility?

spiral galaxies shape spectra

strong lensing cluster Abell-2218 (NASA/STScI)

- gravitational lensing: deflection of light bundles by potentials in the large-scale structure
- weak effect: percent changes in the ellipticity

weak lensing basics

influence of gravitational fields on the shape of galaxies

- light deflection can
 - $oldsymbol{0}$ change the apparent position of a galaxy by $\partial_{ ext{i}}\Phi$
 - 2 shear the image of a galaxy by tidal shear $\partial_i \partial_j \Phi$
 - **3** bend the image of a galaxy by grav. flexions $\partial_i \partial_j \partial_k \Phi$
- particular interest: trace of the tidal shear, because it's related to density of (dark) matter,

$$\kappa \sim \text{tr}(\partial_i \partial_i \Phi) = \partial_i \partial^i \Phi = \Delta \Phi = \delta$$

parameter sensitivity

weak lensing

let's look at the weak lensing spectrum

$$C_{\kappa}(\ell) = \int_0^{\chi_H} \frac{d\chi}{\chi^2} \left[\frac{3\Omega_m}{2\chi_H^2} \, G(\chi) \chi \, \frac{D_+}{\alpha} \right]^2 P_{\delta}(k = \ell/\chi)$$

which is the Fourier-transformed correlation function $\langle \kappa(\theta)\kappa(\theta')\rangle$

- $oldsymbol{1}$ strength gravitational coupling: $\Omega_{\mathtt{m}}$
- 2 rate of growth of gravitational potentials: Ω_m and w
- 3 relation between observed redshift and comoving distance: Ω_m and w
- 4 amplitude of density fluctuations: σ₈
- $oldsymbol{5}$ balance of flucutations between large and small scales $n_{
 m s}$
- 6 shape of $P_{\delta}(k)$: Ω_m and h, smaller influence by Ω_b
- in the easiest case, lensing determines 5 parameters
- parameter dependences are very nonlinear (leading to non-Gaussian likelihoods) and there are degeneracies

from tidal interactions of galaxies to weak lensing - problem or possibility? Björn Malte Schäfer

weak lensing

- weak lensing observable: correlations between shapes of galaxies due to correlated distortion
- alternatively: no correlation between shapes without lensing
- observed lensing spectra

$$C_{E,ij}^{\gamma}(\ell) \to C_{E,ij}^{\gamma}(\ell) + \frac{\sigma_{\epsilon}^{2}}{\bar{n}} \delta_{ij}$$
 (1)

with σ_{ϵ}^2 (shape noise) and \bar{n} (galaxies per unit solid angle)

galaxy shapes...

are **not** uncorrelated due to galaxy formation processes! possibly two primary mechanisms for spiral and elliptical galaxies based on tidal fields

spiral galaxies: tidal torquing

spiral galaxy M81, source: NASA

- non-constant displacement mapping across protogalaxy
- tidal forces $\partial_{ii}^2\Phi$ set protogalactic cloud into rotation
- in addition: anisotropic deformation
- gravitational collapse: separates protogalaxy from the density field and defines volume for integration of shear flows

spiral galaxies

tidal torquing simulations

particle velocities around a forming halo

- non-minimal coupling of haloes to the tidal shear field
- angular momentum $L_i \propto \epsilon_{ijk} I_{jl} \partial_{lk}^2 \Phi$
- analytic treatment possible, tidal shear correlation functions

tidal torquing in Zel'dovich-approximation

 current model: galactic haloes acquire angular momentum by tidal shearing (Peebles 1969, White 1984)

$$\vec{L} \simeq \varrho_0 \alpha^5 \int_{V_L} d^3 q (\vec{q} - \bar{q}) \times \dot{\vec{x}}$$
 (2)

tidal shearing can be described in Zel'dovich approximation

$$\vec{x}(\vec{q},t) = \vec{q} - D_{+}(t)\nabla\Phi(\vec{q}) \rightarrow \dot{\vec{x}} = -\dot{D}_{+}\nabla\Phi \tag{3}$$

- expand gravitational acceleration around the centre of mass of the halo: $\partial_i \Phi(\vec{q}) = \partial_i \Phi(\bar{q}) + \partial_{ii}^2 \Phi(\bar{q}) (\vec{q} \bar{q})^j$
- 2 relevant quantities: inertia I_{ij} and shear $\partial_{ij}^2\Phi$

$$L_{i} = \alpha^{2} \dot{D}_{+} \sum_{ik} \epsilon_{ijk} \sum_{l} I_{jl} \partial_{lk}^{2} \Phi$$
 (4)

• tidal shear $\partial_{ii}^2\Phi$, derived from the potential Φ , $\Delta\Phi\propto\delta$

theory of quadratic alignments

- halo angular momentum \vec{L} generated by tidal shearing $\partial_{ij}^2 \Phi$: logic is $\delta \to \Phi \to \partial^2 \Phi \to \vec{L} \to \hat{L} \to \epsilon$
- angular momentum direction tilts the disk and changes complex shape $\epsilon=\epsilon_++i\epsilon_\times$:

$$\epsilon_+ = \frac{\hat{L}_y^2 - \hat{L}_x^2}{1 - \hat{L}_z^2} \quad \text{and} \quad \epsilon_\times = 2 \frac{\hat{L}_x \hat{L}_y}{1 + \hat{L}_z^2}$$

with the angular momentum direction $\hat{L}=\vec{L}/L$

- prediction of 4 shape spectra: $C_{\mathsf{E}}^{\epsilon}(\ell)$, $C_{\mathsf{B}}^{\epsilon}(\ell)$, $C_{\mathsf{C}}^{\epsilon}(\ell)$ and $C_{\mathsf{S}}^{\epsilon}(\ell)$ including correlations of the scalar ellipticity $|\epsilon|^2 = \epsilon_+^2 + \epsilon_\times^2$ and cross-correlation with the E-mode
- effectively a single parameter a: alignment of \vec{L} with $\partial^2_{ij}\Phi$

disk orientation

weak lensing

intrinsic shape E- and B-mode

- tomographic spectra for Euclid
- small scale correlations, similar to linear lensing, smaller than nonlinear lensing in all bins

spiral galaxies

weak lensing

(shape spectra)

intrinsic shape C- and S-mode

- tomographic spectra for Euclid
- 2 new observables, spectra similar, cross-spectrum steeper at low ℓ

estimation biases Ω_{m} and σ_{8}

estimation biases and statistical errors on Ω_{m} and σ_{8}

- Euclid 7-bin tomography: σ_8 is biased high
- 2...3σ in terms of the (marginalised) statistical error

estimation biases Ω_m and w

estimation biases and statistical errors on $\Omega_{\rm m}$ and w

- Euclid 7-bin tomography: w is biased negative
- dark energy could be mistaken for Λ

observability of the shape spectra

s/n-ratio for measuring $\mathcal{C}^\epsilon_{\text{F}}(\ell)$ and $\mathcal{C}^\epsilon_{\text{S}}(\ell)$ with Euclid

- all 4 spectra are observable with Euclid, tomography boosts signal
- few 10 σ of significance \rightarrow measurement of the alignment parameter with percent error

intrinsic shape bispectra

intrinsic alignment bispectra $B^{\epsilon}(\ell,\ell,\ell)$ for Euclid

- shape bispectra, simplified alignment model
- different configuration dependence compared to lensing
- surprisingly strong, confirms earlier results on simulations

weak lensing

3d ellipticity alignments

3d intrinsic alignment and lensing spectra $C_{\ell}^{\epsilon}(k,k)$

- incorporate intrinsic alignments into the 3d weak lensing formalism
- for quadratic (theory) and linear (theory and numerics) alignments

weak lensing

elliptical galaxies: tidal shearing

elliptical galaxy NGC 1316, source: ESO

- stars are in virial equilibrium with the dark matter
- tidal field $\partial_{ii}^2 \Phi$ distorts the equipotential surfaces, effect proportional to $1/\sigma^2$ (nice catch: lensing measures $\partial_{ii}^2 \Phi/c^2$)
- new model, linear relation $\epsilon \propto \partial_{ii}^2 \Phi$ from Jeans-equilibrium, single parameter: "Hooke-constant"

elliptical galaxies

Björn Malte Schäfer

from tidal interactions of galaxies to weak lensing - problem or possibility?

elliptical galaxies: intrinsic alignment spectra

linear and quadratic alignments in comparison to weak lensing

- amplitude fixed to comply with CHFTLenS
- cross correlation between weak lensing and intrinsic alignment (GI-terms)
- alternative alignment models
 - based on vorticity? ellipticity depends on $\vec{\omega} = \nabla \times \vec{\upsilon}$?
 - directly in the initial conditions? ellipticity reflects $\partial_{ii}^2 \delta$?

Björn Malte Schäfer from tidal interactions of galaxies to weak lensing - problem or possibility?

composite alignment model

composite alignment model vs. gravitational lensing

- IAs models affect lensing spectra on different angular scales
- they bias cosmological parameters in different ways, strongest effect on Ω_{m} and σ_{8}
- typical ratio: q = 0.7 spiral galaxies, 1 q = 0.3 elliptical galaxies

Björn Malte Schäfer

evidence for ACDM

loss of Bayesian evidence

• Bayesian evidence ratio B for ΛCDM from weak lensing (Euclid) with a CMB-prior $p(\theta_{\mu})$ (Planck)

$$B = \frac{\int d^{n}\theta \, p(\theta_{\mu}) \, \mathcal{L}_{t}(\theta_{\mu})}{\int d^{n}\theta \, p(\theta_{\mu}) \, \mathcal{L}_{w}(\theta_{\mu})}, \tag{5}$$

loss of evidence due to shift of the best fit point

testing gravity with intrinsic alignments

bounds on η and μ (preliminary)

weakly perturbed FLRW-metric

$$ds^{2} = \left(1 + \frac{2\Phi}{c^{2}}\right)c^{2}dt^{2} - a^{2}(t)\left(1 - \frac{2\Psi}{c^{2}}\right)$$
 (6)

with two Bardeen-potentials Φ and Ψ

- relativistic particles are sensitive to $\Phi+\Psi,$ nonrelativistic particles just to Φ
- ratio Φ/Ψ from combining lensing and IAs

Björn Malte Schäfer from tidal interactions of galaxies to weak lensing - problem or possibility?

weak lensing spiral galaxies

shape spectra

shape bispectra

intrinsic alignments are...

- serious contaminant in lensing surveys
 - spectra (2d, tomographic, 3d) and bispectra
 - intrinsic shape spectra can be measured with Euclid
 - parameter estimation biases are significant
 - there are many ways to distinguish lensing and IA
- chance to discover new things
 - no extra cost: same observable as weak lensing
 - insight into galaxy formation processes of spiral galaxies
 - virial equilibrium of elliptical galaxies: reaction to tidal fields
 - measurement of tidal fields on galaxy scales: gravity theories?
- opportunity for Euclid:
 - significance of intrinsic alignments: few 100
 - measurement of alignment model parameters at the %-level

many thanks: Philipp Merkel, Tim Tugendhat and Robert Reischke