A test of general relativity with radio links with the Cassini spacecraft B. Bertotti, L. Iess¹ and P. Tortora, Nature 425, 374 (2003)

- 1. Technology and science in interplanetary telecommunications
- 2. A new test of general relativity
- 3. The Cassini experiment
- 4. Why has it not been done before?
- 5. A cosmological scenario for gravity $\gamma = 1 + (2.1 \pm 2.3) \times 10^{-5} (1\sigma)$

No violation. Accuracy improved by a factor 50.

¹Leader of the experiment

1. Technology and science in interplanetary telecommunications

- A coherent carrier for Doppler effect
- Side bands for data transmission and ranging

PROBLEMS:

- Weak signals (requiring large dishes)
- Large downlink bit rates for planetary imaging Both show the need for greater frequencies.

S-band 2-3 GHz X-band 7-8 GHz

Ka-band 32-34 GHz

ULYSSES: S up and down

X down for data

CASSINI: X up and down (ranging and Doppler) K_a up and down (Doppler) MERCURY

ORBITER: X up and down (ranging and Doppler) Ka up and down (ranging and Doppler)

DSS 25 - Goldstone, California

JPL

Multi-frequency radio link

Cassini spacecraft with high-gain antenna (points to the Earth)

Three independent observables

 $X \rightarrow X$:

 $Ka \rightarrow Ka_1$: y_{KK}

 $X \rightarrow Ka_2$: y_{XK}

 y_{XX}

DSS 25 at Goldstone (CA)

Cassini's target accuracy (in K_a band):

 $\Delta v/v = 10^{-14}$ at 1000 - 10,000 s (conjunctions) $\Delta v/v = 3 \times 10^{-15}$ at 1000 - 10,000 s (oppositions)

 $\Delta v/v = 10^{-14}$ corresponds to an accuracy in velocity of 3 x 10⁻⁴ cm/s !!

Dynamic range of 10¹⁰ !!

2. A new test of general relativity

Measuring the space curvature in the solar system.

Deflection of light (Eddington 1919, Lebach 1995)

Frequency fluctuations: $\sigma_{\Delta\nu/\nu} = 10^{-14}$

$$\mathbf{SNR} = \frac{6 \times 10^{-10}}{10^{-14}} = 6 \times 10^{4}$$

"Expected" error $\sigma_{\gamma} = 2 \ge 10^{-5}$ 50 times better than earlier measurements !!

3. The Cassini experiment

Time (days from 2002 solar conjunction)

Digging into the signal by 10¹⁰:

- Position of DSS25 redetermined
- Earth solid tides ("consider" parameters)
- Effect of troposphere: measured at DSS25 with water vapour radiometers
- Non-gravitational forces in part measured, in part fitted: RadioThermoelectric Generators (3) Radiation pressure on antenna dish (2)
- Keplerian parameters of spacecraft (6)
- Etc.
- Up to 12 parameters fitted (6 + 3 + 2 + 1)The result (1σ) :

$$\gamma = 1 + (2.1 \pm 3.2) \times 10^{-5}$$

Non-gravitational acceleration in the orbitral plane

4. Why has it not been done before?

2002/06/06 00:18

Multi-frequency radio link

Cassini spacecraft with high-gain antenna (points to the Earth)

Three independent observables

 $X \rightarrow X$:

 $Ka \rightarrow Ka_1$: y_{KK}

 $X \rightarrow Ka_2$: y_{XK}

 y_{XX}

DSS 25 at Goldstone (CA)

5. A cosmological scenario for gravity

Let δ_N be the Newtonian deflection. In General Relativity $\delta_{GR} = 2\delta_N$ Set: $\delta = (\gamma + 1)\delta_N$

Newtonian model: $\gamma = 0$; General Relativity: $\gamma = 1$.

If a scalar field, in addition to the metric, contributes to gravity, we expect $\gamma < 0$.

In string theory a scalar ϕ , partner to the graviton, is needed; if massless, it produces long-range forces between neutral bodies (Damour, Polyakov, etc.) and contributes to gravity. ϕ is essential in primordial cosmology. In this view gravity is not purely geometrical and couples to other fields in (unknown) ways dependent on ϕ . As the Universe expands, its effects get weaker, but a present-day remnant will **generically and jointly** violate all tests (γ , β , $\eta_{Nortvedt}$, dG/dt, free-fall laboratory experiments, etc.). A firm prediction:

$\gamma < 1$

Murray et al claim violation of SEP:

$$\alpha^{em} = \alpha^{em}_{now} [1 - (0.72 \pm 0.18) \times 10^{-5}]$$

Expected value of $1 - \gamma$ smaller than 10^{-5} . Investigating early cosmology from solar system experiments?