Accélération d'atomes ultra-froids : vers une mesure de h/M et de α

Laboratoire Kastler Brossel, Paris (ENS, CNRS, UPMC)

BNM - Institut National de Métrologie, Paris (CNAM)

P. Cladé, R. Battesti, S. Guellati, C. Schwob, B. Grémaud, F. Nez, L. Julien, F. Biraben

Determination of the fine structure constant

• measurement of h/M_A at 6×10^{-8}

 \longrightarrow determination of α at 3×10^{-8}

• total dispersion of α measurements: 2.4 ×10⁻⁷ (CODATA 1998)

Measurements of α

- – Codata98
 - ----- Codata02

The principle of the experiment : measurement of the atomic recoil velocity

measurement of
$$v_{recoil}$$
 and $k \Rightarrow h/M_A$

Raman transitions (1) : velocity selection MA $\vec{M}_A \Delta \vec{\mathbf{v}} = \hbar \left(\vec{k}_1 - \vec{k}_2 \right)$ $2\pi \delta_{\gamma} = \omega_1 - \omega_2 - \omega_{ab} - \vec{v} \cdot (\vec{k}_1 - \vec{k}_2) - \hbar \frac{(\vec{k}_1 - \vec{k}_2)^2}{2M_A}$ $\delta_{r} = 0 \text{ and } \vec{k} = \vec{k_1} \approx -\vec{k_2} \Rightarrow \omega_1 - \omega_2 \approx \omega_{ab} + 2k(v + v_r)$

- coherent momentum transfert
- control of $\delta_r \implies$ control of v
- •two hyperfine levels involved >velocity selection and measurement

Raman transitions (2) : acceleration of atoms

Acceleration ⇔ Bloch oscillations

Horizontal acceleration of atoms (1)

$$v_{sel} - v_{meas} = \frac{1}{2\pi} 2N(\vec{k}_1 - \vec{k}_2).\vec{k}_{Bloch} \frac{\hbar}{M_A} = 2N\frac{hv_B\overline{v}_R}{M_Ac^2}$$

 \mathcal{T} Problem ! \mathcal{T} For $N \ge 4$, atoms miss the detection area.

Horizontal acceleration of atoms (2)

Experimental curves (50 oscillations)

to reduce systematic errors \implies alternate and symmetric accelerations in horizontal opposite directions

 $\delta_0 = + (1 \ 506 \ 799, 5 \pm 3, 1) \text{ Hz}$ «+100 v_r» «-100 v_r» l kHz 1.506 -1.507 1.507 $v_{\text{meas}} - v_{\text{sel}}$ (MHz) deduced recoil : 15 066, 690 (23) Hz

 $\delta_0 = -(1\ 506\ 531, 2\pm 3, 1)$ Hz

Horizontal geometry : results

R.Battesti et al, Phys. Rev. Lett. 92, 253001 (2004)

Vertical configurations (1)

Vertical acceleration with Bloch oscillations

$$M_{A}\Delta \mathbf{v} = M_{A}gt - N \times \frac{2h\nu}{c}$$
$$\int_{C}$$
$$\frac{h}{M_{A}} = \frac{(gt - \Delta \mathbf{v})}{N} \frac{c}{2\nu}$$

differential measurement («up» and «down» accelerations) \implies independent of g

Vertical configurations (2)

Vertical beams so that the force due to the Raman transitions exactly compensates gravity

atoms submitted to a vertical standing wave

In the standing wave, the atom oscillates at the same place with the frequency:

$$v_{B} = \frac{M_{A}g}{2\hbar k}$$

Present work: vertical geometry

vertical acceleration of the atoms

• 80 recoil transfers

 careful investigations of experimental limiting factors and systematic effects

observation of Bloch oscillations in the vertical standing wave

Experimental curves in vertical geometry

80 oscillations

center of the curve: 1,7 Hz \implies v_r/9000 in 10 minutes

Inverting the sens of photons: a way to reduce systematic effects

$$\frac{E_b - E_a}{h} = v_{HFS} + \Delta(x, t)$$

with $\Delta(x,t)$ a systematic effect (light shift, quadratic Zeeman effect (m_F=0)..)

$$\overrightarrow{k_2} - \overrightarrow{k_1} \cdot \overrightarrow{v_{\text{meas}}} = 2\pi \left[\delta - (v_{HFS} + \Delta(x, t)) \right]$$
$$\left(\overrightarrow{k_1} - \overrightarrow{k_2} \cdot \overrightarrow{v_{\text{meas}}} = 2\pi \left[\delta' - (v_{HFS} + \Delta(x, t)) \right]$$

 $\overline{\mathbf{v}}_{\text{meas}} = \frac{\pi}{2k} (\delta' - \delta)$ independent of $\Delta(\mathbf{x}, \mathbf{t})$ $k_1 \approx k_2 = k$

Prospects

Future : new cell + slow atoms source

• better vacuum

Uncertainties (1)

Lasers wavelenghts

uncertainty of 10 MHz on the Raman and Bloch laser frequencies

Angle between the different laser beams

estimation based on the fiber diameter (5 $\mu m)$ and the focal lenghts (40 mm) \rightarrow 63 μrd

Wave fronts curvature

radius of curvature $R_C > 20 m$

vertical motion in 20 ms ~ 2 mm \rightarrow θ ~ 10⁻⁴ rd

 5.2×10^{-8}

 2×10^{-9}

 $5 \times$

differential effect between the measurements +/- 50 oscillations

→ 8 × 10⁻⁸

Magnetic fields fluctuations

transition between $m_F = 0$ sub-levels magnetic field of 150 mG \rightarrow 9,6 Hz Fluctuations $[(B_{sel} - B_{mes})_{+50} - (B_{sel} - B_{mes})_{-50}] \sim 1 mG \rightarrow 0,13$ Hz

Comparison with S. Chu's experiment

 \implies vertical geometry

- atomic interferometry : fringes width of 8 Hz (500 Hz in our experiment)
- rightarrow transfert by resonant adiabatic passages between the F=3 and F=4 levels: efficiency 94% (99,5 % in our experiment)
- interferometry: sensitivity to gradients (magnetic fields, intensity...)
 Bloch oscillation in the gravity field: sensitivity to gravity fluctuations

-10

F=2 π/2

10

5

0

(kHz)

-5