GREX 2004 Nice 28-30 octobre 2004

Pierre Touboul with support from Rodney Torïi (Stanford University)

ONERA - Physics and Instrumentation Department BP 72 F-92322 Châtillon Pierre.Touboul@onera.fr

Gravity probe B Mission present status

Precision Clocks in Space and GPA H-maser (1976)

Gravity Probe A (1976)

Vessot *et al, PRL 45, 2081 (1980)*

•Comparison of two clocks at different gravity potential

- •on ground and on board a rocket with parabolic trajectory (10 000 km max. altitude)
- redshift of 4x10⁻¹⁰ measured with a 10⁻¹⁴ clock frequency stability
- •70 ppm confirmation of combined redshift and 2nd order Doppler

• ACES/PHARAO (ISS : 2008 ? Or other S/C : ?) expected accuracy : 25 better

septembre 2002

 \sim

Ecole d'été Géodésie spatiale

GRAVITY PROBE B SCIENTIFIC OBJECTIVES

Earth gravity field as a curvature of space time

Earth rotation drags local space time

In orbit configuration

Circular Polar Orbit :

- Altitude : 640 km
- Eccentricity : 1-2 10⁻³
- Inclination : 90.007 °

18 months operation (16 months present evaluation)

1 telescope 4 gyros (0.3 marcsec/year resolution) 1 GPS receiver Mass trim mechanism 12 thrusters

ONERA

Needs of : •Star reference frame •Ultra-sensitive gyros •No disturbation •Integration of the signal

DMPH

CONTROLLED SPACE ENVIRONMENT with drag-free satellite orbit

- and cryogenic experiment :
 - magnetic shielding
 - squid rotation detection
 - low thermal noise
 - He thrust

HR 8703 (IM PEG) Guide Star Identification

Preliminary HR 8703 Positions for Peak of Radio Brightness Solar System Barycentric, J2000 Coordinate System

- Optical & radio binary star
- Magnitude 5.7 (variable)
- Declination 16.84 deg
- Proper motion measured by SAO using VLBI

Very Large Array, Socorro, New Mexico

Project Timeline : The basis

1893 Mach's Principal -The Science of Mechanics- acceleration relative to distant stars.

1887 Michelson & Morley Experiment : speed of light remains constant

1905 Einstein Special Relativity : propagation of matter and light at high speeds.

1915 Einstein General Relativity : gravitational forces in terms of space curvature caused by the presence of mass.

Fundamental principle : accelerated frames and in gravitation fields frames are equivalent. General Relativity predicts : clocks evolution in gravitational fields (or accelerated frames), gravitational redshift, existence of gravitational lensing, gravitational waves, gravitomagnetism, Lense-Thirring effect, and relativistic precession of orbiting bodies.

1924 J. Lense and H. Thirring calculated effect : a rotating object will slowly drag space and time around with it! A moon orbiting a rotating planet undergoes a relativistic advance of its ascending node. Frame Drag.

1929 A. S. Eddington : proposed an Earth based gyroscope or pendulum experiment of general relativity.

If the earth's rotation could be accurately measured by Foucault's pendulum or by gyrostatic experiments, the result would differ from the rotation relative to the fixed stars by this amount of 19 milliarcsecond/year O N E R A

Project Timeline : The Fondation

1961 First formal NASA contact : Fairbank writes Dr Abe Siberstein describing an instrument that would measure the geodetic precession to a few percent.

1962 Francis Everitt joins William Fairbank and Leonard Shiff at Stanford on the Gravity ProbeB.

1965 1st fused quartz telescope built.

1971 NASA begins examining feasibility of a flight experiment. Ball Aerospace completed a Mission Definition Study.

1973 Dan Debra's successful flight of a drag-free satellite (the Transit navigation satellite).

1976 Gravity Probe A launch. 1 hour 55 minute flight of a MASER atomic clock demonstrating time change as weaker levels of gravity : test of redshift to an accuracy of 2.10⁻⁴.

ONERA

1977 End of longest single continuous research NASA grant ever awarded (63-77).

1980-82 Phase A at MSFC leading to larger dewar and satellite.

ω

Project Timeline : The mission happens

1983 Stanford restructured program : science instrument within the dewar to be integrated and launched in 1991 on the shuttle : STORE (Shuttle Test of the Relativity Experiment)

1985 Gyro production throws out Beryllium, Hollowed Beryllium, Hollow Quartz spheres and focuses on Quartz rotors...

1986 Challenger explodes.

1989 Stanford's first prolonged levitation of a quartz sphere.

1992 First Flight Hardware within the Science Mission starts to be built : Dewar...

1995 NASA cancels Shuttle Test and directs Stanford to go directly to flight.

2001 Integrate Payload with Spacecraft.

April 20th 2004 Gravity Probe B successfull launch out of Vandenburg Air Force Base at 9:55am.

The Satellite

VEHICLE

Length 6.43 meters Diameter 2.64 meters Weight 3,100 kg Spacecraft Power: 293 Watts

LAUNCH 20 April 2004

The Actual Orbit - Delta II

PAYLOAD GENERAL CONFIGURATION

•From cryogenic (He liq. 1.8 K) to room temperature •Alignment : Telescope, Gyros, S/C spin axis •Drag free satellite : 10⁻⁹ g •S/C mass centring •Satellite rotation : ~ 10⁻² Hz (period : 1 to 3 mn)

4 gyros (redundancy & performance improvement), drift rate : 0.3 marsec/year

leads to accuracy : $\gamma \sim 2.10^{-5}$ *

to be compared to : * CASSINI mission,

 $\alpha_1 \sim 3 \ 10^{-3 **}$

** Lunar Laser ranging Exp. Laser Pos., LageosII I.Ciufolini and E.Pavils) NATURE 431. 938-960. oct. 2004

The Payload with the Dewar

PAYLOAD and DEWAR

2 441 liters of supercooled helium at 1.8 Kelvin (-271.4 C)
2.74 m tall / 2.64 m diameter
Porous plug at the top : as the internal liquid helium heats up, it evaporates and the gas is vented out taking heat with it.
Payload Power Usage: 313 Watts

High structural stability Low temperature Fine management of He behaviour Fine magnetic shielding Fine mass centering

- Pierre Touboul - Ecole d'été Géodésie spatiale - 2 septembre 2002

13

The Probe

PROBE

length- 2.74m (9 feet). working temperature- 1.8 Kelvin (-271.4 C). The probe contains 450 plumbing lines and electrical wires. The entire probe was assembled in a class-10 cleanroom.

The Quartz Block

QUARTZ BLOCK

weight : 34 kg length : 55 cm diameter : 18.5 cm block lapped and polished (14 months to hand-polish) telescope mounting surface of the block had to be polished to within 0.01 μ m

The Gyroscopes

GYROSCOPE Ball (rotor) size- 3.81 centimeter diameter(1.5-inch) Homogeneous fused quartz : 2 10⁻⁶ Sphericity : less than 40 atomic layers from perfect (1nm) Coating- Niobium (uniform layer 1,270 nanometers thick) *Electrostaticaly suspended (25 µm gap). Spin Rate- Between 5,000 and 10,000 RPM (obtained once by He flow)* accuracy : 0.3 marcsec/year drift (0.5 10⁻¹⁶ rd/s)

16

🗶 DMPH

Major deffects :

- non sphericiy
- unballanced mass
- friction

The SQUID's rotation measurement

SQUID's

cryogenic magnetic field variation sensor. superconducting loop with 2 Josephson junctions sensitivity : 5x10⁻¹⁴ gauss (5x10⁻¹⁸ Tesla) 10⁻¹³ of the Earth's magnetic field.

Rotation Measurement :

London Effect 10⁻¹⁰ °/ hour (< 10⁻⁶ best nav. gyro performance)

London effect induces magnetic moment the variation of orientation is detected by SQUID

ONERA

🟅 DMPH

17

The Telescope

CASSEGRAIN TELESCOPE

Composition- Homogeneous fused quartz Length 35.56 centimeters (14 inches) Aperture 13.97 centimeter (5.5-inch) Focal length 3.81 meters (12.5 feet) Mirror diameter 14.2 centimeters (5.6 inches) Guide Star HR 8703 (IM Pegasi : Mag 5.6) Accuracy : 0 .1 milliarcsecond i.e. 5.10⁻¹⁰ rd

ONERA

🔁 DMPH

The star tracker & Sunshade

SUNSHADE

FLESCO

GYROS.

SCIENCE INSTRUME ASSEMBL QUART

Inside sun shield : series of black, metal baffles to absorb incoming stray light before it can reach the telescope.

STAR TRACKER

Two star trackers : wide field and narrow field (star sensor).Star sensor :field of view ~ 1° (1.7 10^{-2} rd)
resolution ~ 1 arcminute (3 10^{-4} rd)
in GP-B telescope field of view,

-> Guide star's position to 1 milliarcsecond (5 10⁻⁹ rd).

ONERA

DMPH

19

The GMA (Gas Management Assembly) and the Thrusters

GMA

Helium gas (.99999% pure) used to spin up the gyroscope ball. Helium gas used for thrusters of the drag free control. Fine distribution and management of the evaporated He to be ejected from the dewar

THRUSTER 12 pairs of thrusters on the vehicle.

Use of the evaporated liquid helium from the dewar as a propellant linear thruster independent of the inlet pressure

Objective :

Fine control of the satellite attitude and orbit
Satellite rotates to modulate the SQUID output (reduction of noise)

GP-B Set-up Highlights

GP-B Launch: 20 April 2004 - 09:57:24

Weeks 1 - 4

5

- 2 septembre 2002

- a) SQUID set-up & telescope set-up
- b) gyro suspension
- c) low-T bakeout
- d) first drag-free

Weeks 9 - 12

- (a) increase S/V roll rate
- (b) reboot flight computer
- (c) 3 Hz spins

<u>Weeks 17 - 19</u> (a) final 77.5 s period roll (b) ATC tuning (c) fine (~ 5 arc-s) gyro alignment

<u>Weeks 5 - 8</u> a) 'flux-flush' b) 0.3 Hz spin c) lock on guide star d) charge control

<u>Weeks 13 - 16</u>

- (a) final 60 80 Hz spins
- (b) ATC tuning
- (c) 'coarse' gyro alignment

Entered Science Phase: 27 August 2004 – 12:00:00

On-Orbit GP-B Technology Demonstrations

Electrostatic Positioning System

Gyroscopes

Charge Control System GSS Charge Measurement UV Charge Discharge Rate

SQUID Readout

Magnetics

Telescope System

0.45 nm rms position noise

- Spin-down < 1 μHz/hour
 Charging < 0.3 pC/day
 - < 5 pC control
 < 1 pC rms
 > 0.3 pC/min
- < $3x10^{-5} \Phi_0/Hz^{1/2}$ at 0.5 rpm Beats requirement, all SQUIDS
- AC attenuation ~ 10¹²
 dc trapped flux ~ 1 μG
- < 34 marcsec/\delta Hz readout noise</p>

 $\Phi_0 = h/2e \sim 4.10^{-15}$

ONERA

Technologies Demonstrated On-Orbit by GP-B

Proportional Helium Thruster

Drag Free Control

GPS System Time transfer accuracy Navigation accuracy

Superfluid Flight Dewar (2400 *l*) Porous plug

- Inclination error < 0.00007 deg, (< 100m) orbit average to star < 0.004 deg
 - 1 10 mN/thruster
 - < 10 nm vehicle position mean cross-track average < 10⁻¹¹ g
 - > 95% lock ratio at all roll rates
 < 3 µsec UTC to vehicle time
 < 7 m rms, < 0.7 cm/s

Lifetime ~ 15 months,
 Dynamic flow range 2-18 mg/s

Gravity Gradient Measured by Gyroscopes Gyro #3, #4 Suspension Control Effort (2+ orbits)

Raw gravity gradient resolution < 10⁻⁹ g

- 2 Gyros not at drag-free point
- Projection of gravity gradient along electrostatic suspension axis
 @ twice the orbital frequency

ONERA

DMPH

24

GP-B Charge Management

Discharge of Gyro #1

Day of year, 2004

Discharge of Science Gyros Demonstrated

Superconducting SQUID Readout

Output of SQUID low-pass filter for caged gyros over 22 hours

"SQUID" – ultra sensitive low noise magnetometer reads angle to 1 milliarc second in 5 hours

Gyro #4 London Moment Readout Data

Drag-Free Performance

Suppression of Z axis gravity gradient acceleration

Twice orbital term reduced by > 100

28

GP-B Telescope Pointing

Telescope Detector Signals

Acquiring Guide Star

Drive in time ~ 110 s RMS pointing ~ 80 marc-s

30 Touboul - Ecole d'été Géodésie spatiale - 2 septembre 2002 ø - Pierr

The Science Mission

Thanks to Rodney Torii

THE END

32

Т

The Thrusters

THRUSTER

12 pairs of thrusters on the vehicle. Use of the evaporated liquid helium from the dewar as a propellant linear thruster independent of the inlet pressure

Objective :

Fine control of the satellite attitude and orbitSatellite rotates to modulate the SQUID output (reduction of noise)

DMPH

Polhode Motion

<u>Gyro # 1</u> Spin Speed – 3 Hz July 4 - 7, 2004 36-hour Polhode Period

 $F_{\text{polhode}} = \Delta \text{ I/I } \cos(\theta) F_{\text{spin}}$

 $=> \Delta I/I < 2x10^{-6}$

🏅 DMPH

8

SQUID Readout Noise Beats Spec

GPB MISSION PRESENT STATUS (Cospar july 04)

Satellite in nominal orbit and nominal operation

•Drag free and attitude control being optimised : telescope pointing not yet stabilized along reference star

- •2 gyros rotates at nominal frequency
- He Dewar : 14 months mission evaluated

•Calibration phase running : no scientific results before 6 months

The Solar Arrays

so·lar cell

def: A semiconductor device that converts the energy of sunlight into electric energy. Also called a photovoltaic cell.

SOLAR ARRAYS FACTS

Each panel is 3.5 meters long by 1.3 meters wide The release mechanism is made up of Nitinol rods, commonly called "memory metal". When the rods are heated, they change shape and release the panels.

The 9,552 individual Gallium Arsinide solar cells have an effeciency of 18.5%

The total power needed to run the entire satellite would barely power the average microwave.

🟅 DMPH

The Truss Structure

Truss

def: An engineered structure of short framing members, such as beams, chords, and diagonals, assembled into a rigid support structure.

TRUSS STRUCTURE FACTS

The truss structure is made of aluminum alloy beams, heliarc welded at the joints. Mechanical joints were not stiff enough to maintain the satellite's critical geometry.

The structure's "open" frame design exposes the dewar to space, improving heat radiation. Equipment is attached by self-integrated pallets. Individual subsystems can be removed without disassembling the entire space craft.

差 DMPH

20 MAR 2003

ERA

42

