Color pictures complementary to the paper: Dissipative and weakly–dissipative regimes in nearly–integrable mappings (Preprint 2005)

Alessandra Celletti	Claude Froeschlé	Elena Lega
Dipartimento di Matematica	Observatoire de Nice	Observatoire de Nice
Università di Roma Tor Vergata	B.P. 229	B.P. 229
Via della Ricerca Scientifica 1, I-00133 Roma (Italy)	06304 Nice Cedex 4 (France)	06304 Nice Cedex 4 (France)
(celletti@mat.uniroma2.it)	(claude@obs-nice.fr)	(elena@obs-nice.fr)

September 29, 2005

1 Analysis of a dissipative 2-dimensional mapping

We recall the dissipative standard map described by the equations:

$$y' = by + c + \frac{\varepsilon}{2\pi} s(2\pi x)$$

$$x' = x + y',$$
(1)

where $y \in \mathbf{R}$, $x \in [0, 1)$, c is a real constant and s(x) is a regular periodic function; the mapping depends on two parameters: $b \in \mathbf{R}_+$ is the *dissipative* parameter, while $\varepsilon \in \mathbf{R}_+$ is the *perturbing* parameter. We recall that a widely studied mapping belonging to the class (1) is the paradigmatic standard map, where the function s(x) is defined as

$$s(x) = \sin(2\pi x) \tag{2}$$

2 Study of the dynamic in the space of parameters: $b, \epsilon, y(0), x(0)$.

The following set of figures corresponds to grids of 500×500 initial conditions regularly spaced in some suited space of parameters as precised below. The colors in the figures are associated to the values:

$$sgn(FLI(T)) \log 10(|FLI(T)|)$$

where T is the number of iterations used in the computation. The FLI-values are reported with different coulors:

- The orange stands for the presence of curve attractor: the FLI values are in the interval $[-\log T : \log T]$, i.e. the largest Lyapunov exponent goes to zero (and the second is negative).
- The yellow color corresponds to strange attractors: the FLI values are larger than $\log T$, i.e. the largest Lyapunov exponent is positive.
- The colors going from purple to black reveal the presence of periodic attracting orbits: the plotted quantity has decreasing negative values from purple to black , i.e. the largest Lyapunov exponent has decreasing negative values.

In the following we shall consider the function $s(2\pi x)$ as:

- A) $s(2\pi x) = sin(2\pi x)$
- B) $s(2\pi x) = sin(2\pi x \cdot 3)$
- C) $s(2\pi x) = sin(2\pi x \cdot 5)$
- D) $s(2\pi x) = sin(2\pi x) + \frac{1}{3}sin(2\pi x \cdot 3)$
- E) $s(2\pi x) = sin(2\pi x) + \frac{1}{20}sin(2\pi x \cdot 5)$
- F) $s(2\pi x) = \frac{\sin(2\pi x)}{\cos(2\pi x) + 1.4}$

For each of the above mappings, we consider the following rotation numbers:

- aa1) $\alpha = \frac{\sqrt{5}-1}{2}$
- aa2) $\alpha = \frac{2}{3}$
- aa3) $\alpha = [1, 3, 4, 1^{\infty}]$
- aa6) $\alpha = \frac{1}{2}$

3 DFLI-Charts

Analysis of: Space $b - \epsilon$ and Space b - y The set of figures (left) corresponds to grids of 500×500 initial conditions regularly spaced in b and ϵ , both taken in the interval [0.01:1] for y(0) = 5. and x(0) = 0., for the 3 function $s(2\pi x)$ and for the 4 values of the parameter α . The time is always T = 1000. The set of figures (right) corresponds to grids of 500×500 initial conditions regularly spaced in b and y, taken respectively in the interval [0.01:1] and [0.01:10] for $\epsilon = 0.9$ and x(0) = 0, for the 3 function $s(2\pi x)$ and for the 4 values of the parameter α . The time is always T = 1000 after a transition of 10000 iterations computed in order to go to the attractor.

Figure 1: Map A) , aa
1): $\alpha = \frac{\sqrt{5}-1}{2}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 2: Map A) , aa2): $\alpha = \frac{2}{3}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 3: Map A) , aa
3): $\alpha = [1,3,4,1^\infty].$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 4: Map A) , aa4): $\alpha = \frac{1}{2}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 5: Map B) , aa1): $\alpha = \frac{\sqrt{5}-1}{2}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 6: Map B), aa2): $\alpha = \frac{2}{3}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 7: Map B) , aa
3): $\alpha = [1,3,4,1^\infty].$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 8: Map B) , aa4): $\alpha = \frac{1}{2}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 9: Map C) , aa
1): $\alpha = \frac{\sqrt{5}-1}{2}.$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 10: Map C) , aa
2): $\alpha=\frac{2}{3}.$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 11: Map C) , aa
3): $\alpha = [1,3,4,1^\infty].$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 12: Map C) , aa
4): $\alpha = \frac{1}{2}.$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 13: Map D) , aa
1): $\alpha = \frac{\sqrt{5}-1}{2}.$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 14: Map D) , aa2): $\alpha = \frac{2}{3}$. (left) grid $b - \epsilon$, (right) grid b - y.

Figure 15: Map D) , aa
3): $\alpha = [1,3,4,1^\infty].$ (left) grid $b-\epsilon,$ (right) grid
 b-y.

Figure 16: Map D) , aa
4): $\alpha = \frac{1}{2}.$ (left) grid $b-\epsilon,$ (right) grid
 b-y.