Color pictures complementary to the paper: Dissipative and weakly-dissipative regimes in nearly-integrable mappings (Preprint 2005)

Alessandra Celletti
Dipartimento di Matematica
Università di Roma Tor Vergata
Via della Ricerca Scientifica 1, I-00133 Roma (Italy)
(celletti@mat.uniroma2.it)

Claude Froeschlé
Observatoire de Nice
B.P. 229
06304 Nice Cedex 4 (France)
(claude@obs-nice.fr)

Elena Lega
Observatoire de Nice
B.P. 229
06304 Nice Cedex 4 (France)
(elena@obs-nice.fr)

September 29, 2005

1 Analysis of a dissipative 2-dimensional mapping

We recall the dissipative standard map described by the equations:

$$
\begin{align*}
y^{\prime} & =b y+c+\frac{\varepsilon}{2 \pi} s(2 \pi x) \\
x^{\prime} & =x+y^{\prime} \tag{1}
\end{align*}
$$

where $y \in \mathbf{R}, x \in[0,1), c$ is a real constant and $s(x)$ is a regular periodic function; the mapping depends on two parameters: $b \in \mathbf{R}_{+}$is the dissipative parameter, while $\varepsilon \in \mathbf{R}_{+}$is the perturbing parameter. We recall that a widely studied mapping belonging to the class (1) is the paradigmatic standard map, where the function $s(x)$ is defined as

$$
\begin{equation*}
s(x)=\sin (2 \pi x) \tag{2}
\end{equation*}
$$

2 Study of the dynamic in the space of parameters: $b, \epsilon, y(0), x(0)$.

The following set of figures corresponds to grids of 500×500 initial conditions regularly spaced in some suited space of parameters as precised below. The colors in the figures are associated to the values:

$$
\operatorname{sgn}(F L I(T)) \log 10(|F L I(T)|),
$$

where T is the number of iterations used in the computation. The FLI-values are reported with different coulors:

- The orange stands for the presence of curve attractor: the FLI values are in the interval $[-\log T: \log T]$, i.e. the largest Lyapunov exponent goes to zero (and the second is negative).
- The yellow color corresponds to strange attractors: the FLI values are $\operatorname{larger} \operatorname{than} \log T$, i.e. the largest Lyapunov exponent is positive.
- The colors going from purple to black reveal the presence of periodic attracting orbits: the plotted quantity has decreasing negative values from purple to black, i.e. the largest Lyapunov exponent has decreasing negative values.

In the following we shall consider the function $s(2 \pi x)$ as:

- A) $s(2 \pi x)=\sin (2 \pi x)$
- B) $s(2 \pi x)=\sin (2 \pi x \cdot 3)$
- C) $s(2 \pi x)=\sin (2 \pi x \cdot 5)$
- D) $s(2 \pi x)=\sin (2 \pi x)+\frac{1}{3} \sin (2 \pi x \cdot 3)$
- E) $s(2 \pi x)=\sin (2 \pi x)+\frac{1}{20} \sin (2 \pi x \cdot 5)$
- F) $s(2 \pi x)=\frac{\sin (2 \pi x)}{\cos (2 \pi x)+1.4}$

For each of the above mappings, we consider the following rotation numbers:

- aa1) $\alpha=\frac{\sqrt{5}-1}{2}$
- aa2) $\alpha=\frac{2}{3}$
- aa3) $\alpha=\left[1,3,4,1^{\infty}\right]$
- aa6) $\alpha=\frac{1}{2}$

3 DFLI-Charts

Analysis of: Space $b-\epsilon$ and Space $b-y$ The set of figures (left) corresponds to grids of 500×500 initial conditions regularly spaced in b and ϵ, both taken in the interval $[0.01: 1]$ for $y(0)=5$. and $x(0)=0$., for the 3 function $s(2 \pi x)$ and for the 4 values of the parameter α. The time is always $T=1000$. The set of figures (right) corresponds to grids of 500×500 initial conditions regularly spaced in b and y, taken respectively in the interval $[0.01: 1]$ and $[0.01: 10]$ for $\epsilon=0.9$ and $x(0)=0$., for the 3 function $s(2 \pi x)$ and for the 4 values of the parameter α. The time is always $T=1000$ after a transition of 10000 iterations computed in order to go to the attractor.

Figure 1: Map A), aa1): $\alpha=\frac{\sqrt{5}-1}{2}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 2: Map A), aa2): $\alpha=\frac{2}{3}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 3: Map A), aa3): $\alpha=\left[1,3,4,1^{\infty}\right]$. (left) grid $b-\epsilon,($ right $)$ grid $b-y$.

Figure 4: Map A), aa4): $\alpha=\frac{1}{2}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 5: Map B), aa1): $\alpha=\frac{\sqrt{5}-1}{2}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 6: Map B), aa2): $\alpha=\frac{2}{3}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 7: Map B), aa3): $\alpha=\left[1,3,4,1^{\infty}\right]$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 8: Map B), aa4): $\alpha=\frac{1}{2}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 9: Map C), aa1): $\alpha=\frac{\sqrt{5}-1}{2}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 10: Map C), aa2): $\alpha=\frac{2}{3}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 11: Map C), aa3): $\alpha=\left[1,3,4,1^{\infty}\right]$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 12: Map C), aa4): $\alpha=\frac{1}{2}$. (left) grid $b-\epsilon,($ right $) \operatorname{grid} b-y$.

b

b

Figure 13: Map D), aa1): $\alpha=\frac{\sqrt{5}-1}{2}$. (left) grid $b-\epsilon,($ right $)$ grid $b-y$.

Figure 14: Map D), aa2): $\alpha=\frac{2}{3}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 15: Map D), aa3): $\alpha=\left[1,3,4,1^{\infty}\right]$. (left) grid $b-\epsilon$, (right) grid $b-y$.

Figure 16: Map D), aa4): $\alpha=\frac{1}{2}$. (left) grid $b-\epsilon$, (right) grid $b-y$.

