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In the past several years it has come to be appreciated that in low Reynolds number flow the
nonlinearities provided by non-Newtonian stresses of a complex fluid can provide a richness of
dynamical behaviors more commonly associated with high Reynolds number Newtonian flow.
For example, experiments by V. Steinberg and collaborators have shown that dilute polymer
suspensions being sheared in simple flow geometries can exhibit highly time dependent dynamics
and show efficient mixing [1, 2, 3]. The corresponding experiments using Newtonian fluids do
not, and indeed cannot, show such nontrivial dynamics. To better understand these phenom-
ena we study numerically the 2D Oldroyd-B viscoelastic model at low Reynolds number. A
background force is used to create a periodic cell with four-roll mill vortical structure around a
hyperbolic fixed point. We consider both steady and time-periodic forcing. For low Weissenberg
(Wi) number the elastic stresses are bounded and slaved to the forcing, with mixing confined to
small sets near the hyperbolic point. At largerWi an analog to the coil-stretch transition occurs,
yielding large stresses and stress gradients concentrated on sets of small measure, perhaps indi-
cating the development of singularities. The flow then becomes very sensitive to perturbations
in the forcing and there is a transition to global mixing in the fluid.

Figure 1 (a) - (b) shows contour plots of tr S (in color), where S is the polymer stress, with
vorticity contour lines overlayed on top. Figure 1(a) and 1(a’) are simulations for Wi = 0.6,
and Fig. 1(b) and 1(b’) show results for Wi = 5.0. The vortical lines for lower Weissenberg
number (including Wi = 0.6) are not changed qualitatively by the addition of the polymer
stress, i.e. the four vortex flow persists and no additional features are created. Above a critical
Weissenberg number this begins to change, and we see for Wi = 5.0 that additional vortices,
which are oppositely signed, are generated along the stable and unstable manifolds of the hy-
perbolic point. Increasing the Weissenberg number decreases the overall magnitude of vortex
strength. As Wi increases tr S concentrates on thinner sets along the unstable manifold of the
hyperbolic points in the flow. At the central hyperbolic point tr S is dominated by S11, the
first component of the stress tensor. Figure 1(a’) shows slices of S11(π, y, t) along the stable
manifold of the central hyperbolic point for t = 1, 2, ..., 10, increasing in time. It appears that
S11 is approaching a cusp-singularity exponentially in time for Wi = 0.6. For Wi = 5.0, tr S
appears to become unbounded (exponentially) in time, see Fig. 1(b) and 1(b’). A local solution
can be constructed at the hyperbolic point which agrees very well with the simulations. This
local solution predicts exponential in time approach to a solution whose smoothness depends
critically on the Weissenberg number. This work has been submitted for publication [4].

When a small time periodic perturbation from the four vortex background force is added
(along with a small amount of numerical viscosity to control the large stress gradients) the flow
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Figure 1: (a) - (b) Color contours represent tr S and overlayed contour lines are vorticity lines (at t = 6). (a)
Wi = 0.6, (b) Wi = 5.0, Note the difference in scale. (a’) Plot of S11(π, y, t) (first component of stress along
stable manifold of hyperbolic point) for t = 1, 2, ..., 10, (increasing in time) and Wi = 0.6. (b’) S11(π, y, t) for
t = 1, 2, ..., 10, Wi = 5.0. (c) - (d) Particle tracers after t = 400. Initial configuration of particles was a single
color in each quadrant. (c) Wi = 0.5, very similar to solution for a pure Newtonian solvent. (d) Wi = 10.0.

demonstrates large scale mixing for sufficiently largeWi. Figure 1 (c) - (d) show particle tracers
at time t = 400. The initial configuration of the particle tracers is a single color in each of the four
vortex cells. With a steady force the particles remain entirely in their respective cells. Figure
1(c) shows the effect of the time periodic perturbation for low Weissenberg number (which is
qualitatively similar to the behavior for a very low Reynolds number Newtonian fluid). There
is some mixing along the stable and unstable manifold, but the four vortices remain largely
separated. Figure 1(d), for sufficiently largeWi, shows very different behavior. The blue, green,
and yellow vortices have mixed quite significantly - one can see the effect of stretching and
folding which interweaves the fluid particles from different vortices. However, the vortex on the
lower left remains largely undisturbed.
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