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Euler Egns

Eulerian Oru +u-Vu+ Vp =0,
—Ap=V-(u-Vu)
V-u =0 = invariant constraint of incompressibility
( a— X(a,t), X(a,0)=a,
Lagrangian 07X + (Vap)(X,t) =0,

\

Vo ((0X 0 X71) - Va(9X 0 X7 1))

det (VQ,X) =1

invariant constraint of incompressibility




u=P({(VA)uy(A))

Back-to-Labels { OA+u-VA=0, A(z,0) ==z,

Theorem1l ug € C° s> 1, V.-ug =0,V xug € LP,1 <p < .
37 > 0, A,u € L°°([0,T1], C9).



BKM: Sufficient for regularity:

T
S el oo amytt < o

w =YV X u.

Regularity = smooth solution on time interval [0, T7].

Necessary for applications

T
/O IVt oo gyt < o

Vorticity evolution

Ohw+u-Vw=w-Vu




(Ot +u-V)|w = alw|

o= (Vu)é - € =S¢ ¢,
€=,
]

S =3 (Vu+ (Vu)*)

Sufficient for regularity:

T
| ol zoeanydt < o0




3
7,] (z,t) = S—PV / Ezpky] + Ejpky’L) pwk(x - y)| |3

a@,t):%p.v. s D@ — v, 1), Ea, t>>|w<a:—y,t>|| |3

D(e1,ep,e3) = (e1 - e3)det(ey, e, e3)



At worst locally osculating anti-parallel vortex lines = local sine-Lipschitz

E(z —y,t) x &(z, )| < Ca(®)|yl, for|y| < r(t)

At worst locally osculating parallel vortex lines = local Lispchitz €.

€z —y,t) — &z, )] < Cp(t)[yl, for|y| < (1)

Clearly, local Lipschitz implies local sine-Lipschitz but not vice-versa.

€ —y) - 6@ =2[sin (2)



Soft cut-off at r: inner stretching factor

o (2,0) = PV, [ x(¥) D@ € - ,0) &G, t>>|w<a:—y,t>|| €

Outer rate of strain:

(Sp(x,t))ij =
2PV (1= (2)) (e + e3s) (o — )

SP(x,t) = / (x <%> —x(%))

a(z,t) = o' (x,t) + af(x,t) + ap(x,t)




r < r(t)

" (x,t)] < rCq(t) sup |w(z,t)]

lx—z|<r

U(x,t) = sup |u(z,t)]
[z—z[<p

U(x,t)

al(z,1)] < ¢

_3
lap(x,t)| < cp™2]|ugl 2




Method of CFM, Sufficient for regularity:

¢ locally sine-Lipschitz
) u locally bounded

| IEinfrcr(y {2+ rCa(Ollw @)l g} dt < oo

Example:

r(t) ~ (T =) U@®) ~ (T —1t)70 Co(®) ~ (T —t)7¢, |wl|lpe ~
(T —¢)~ 1.

If 1 — b4 ¢ > 2a then the condition for absence of singularity isb + ¢ < 1.

If 1 — b4+ ¢ < 2a thenthe conditionisa+b< 1land 0 < a — c.



Moreover...

D(y,w(x —y),&(x)) = (7 £(x)) X
{[(&(z) - Vy)ulzx —y)] -7 — (F- Vy)(§(@) - ulz —y))}

If |€(x,t) - u(z,t)| < Upar is locally bounded and if the vortical region
becomes thin, then

U U g
o, )] < P (Y
T

r r
where w(t) is the width of the vortical region, ¢ = 1 for sheet-like struc-
tures, g = 2 for tube-like structures. If w ~ (T — ¢)%, d > a: gain of the
min{g(d — a) ,1 — c} over previous.



w=C(VA,wg(A))

From BKM: Sufficient for regularity

I 2

Chae: No single scale self similar blowup.
Fefferman and Cordoba; No squirt blowup without infinite velocity.

Deng, Hou and Yu: local analysis along vortex line and extension of CFM
adapted to specific computations.



Let

MN(x,t) = 0%p
7 - 81;@ 833‘]'

and consider
Q) = {=|MN(z,t) > 0}

the region where 1 is positive definite. (Note that nondegenerate local
minima of p(x, t) are in Q(t).)

Sufficient for blowup:
Ja € Q(0), suchthat X(a,t) € Q(t), Vt € [0,T]
wo(a) = 0,
Tp(Sp)(a) >3 where p(Sg) = spectral radius

|Idea used to prove blowup for “distorted Euler equations” ('86).



Ds+sz+n—wpi—o
t 4 w

The proof is by contradiction. By assumption J¢g so that

’ Jgs |$0(a)Pda = 1,
Jr3 So(a)do(a) - po(a)da < O,
| T'|fgs So(a)do(a) - do(a)da > 1

and also, if we solve

N\

Dip =0, ¢(a,0) = ¢o(a)

then
suppp(t) C Q(t) holds, for0 <¢<T.
We take

y() = [ S(2,06(2,) - $(w, )da



This blows up before T

d 2
_ <O
dty+y >~

because

w(z, t)?|p(z, )| = O,

[ 16, 0Pde =1
and Schwartz
/R3 S¢|°de > y*(t). O

Work by Ohkitani, (and Klainerman 84, unpublished) uses 'l and the equa-
tion for .S to compute the second material derivative of |w|2.



Weak Solutions

Desirable: locally square integrable, evolutionary weak solutions obtained
as limits of good approximate solutions «¢. Needed: weak continuity of
approximations in L2. (Weak continuity is stronger than strong continuity).

lim R3{(u€®ue):V¢}dw=/IR3{(u®u):qu}dx

for all smooth divergence—free ¢, when

im [ @)de= [ (u-¢)da
holds for all ¢.

Known for surface QG (Resnick, '95), not for Euler.



QG

00 +u-VO=0, u= R0

Active scalar (Geometric statistics in turbulence, SIAM Review '94: all a
equations.) For periodic 0 = 3= .o 0(5)etU2) infinite ODE:

d/\ . ) — AN . AN
S0 =37 (5 k)13I7HOK)
t .=
jt+k=l
Using the antisymmetry:

G0 = Sjqr=17 10()O(K)
[ —— 1/.1 1 1
Vig =35 k) (m — W)




s
— max{lj[, [k[}

[
"Yj,k

Consequently

I(=A)~1 [B(61,61) — B(62,62)] lw <
C {101 — O2llw (1 + 109y 101 — O2llw) | (1011l 2 + 1102]] 12)

with || fllw = SUP ;72 ‘f(j)‘. Quasi-Lipschitz, with loss of two deriva-
tives. Loss of derivatives does not impede existence theory, but prevents
a proof of unigueness. Regularity and uniqgueness: with critical dissipa-
tion (|k|0(k)): Cordoba-Wu-C (small data), Kiselev-Nazarov-Volberg and
Caffarelli-Vasseur, all data. For supercritical dissipation there is a gap in
passing from L° to C*%, no gap in passing from L2 to L°°, nor from C* to
C°° (Wu-C, Caffarelli-Vasseur).



Littlewood-Paley decomposition.

o
u = Z Aju
j=-1

supp F (A (w)) C 273, 3]
AjAp#=0=[j -k <1,
(8 + Bjp1+ Bjg2) Bjp1 = A4
Aj (Sk_Q(U)Ak(U» *=0=ke[j]—2,74 2]
Sp(u) = Sh__1 Ag.




A;=WV;(D)=WVo(277D), A_ju=P_1(D)u.

& _1: radial, nonincreasing, C'*°

P_1=0,r>0b

P_1=1,0<r<a
O<a<b<l

Wo(r) = P_1(r/2) —d_1(r), W,(r) = Wo(277r).

(W(D)u)(@) = 2m) " [ Ow(©ae)ds

u(€) = Jpn e~ @&y (x)dx. a <b< %a (eg.a=1/2, b=5/8)



Inhomogeneous Besov space

— [ {25910,
Iz, WQWWMLMWY

The space B;,C(N) s the subspace of Bj ,, formed with functions such
that

J
The Littlewood-Paley energy flux is

im 2%7||u||Lp = O.
— 00

My = /R3 Trace [Sy(u® u)VSy(u)]dx.

This is the (formal) time derivative

My =52 oy 1SN ()P da

of a the energy contained in S (u) when u solves the Euler equation.



Onsager Conjecture

1 dFE
ue(C3« —=0
dt

Eyink, C-E-Titi, Duchon-Robert

Theorem 2 (Cheskidov-C-Friedlander-Shvydkoy) Weak solutions

u e L3([0, 7], B3/ %)

of the Euler equations conserve energy. There exist functions in Bé/oi that
are divergence-free and obey liminf_, ., [Mx| > O.

Related results, also helicity. See also work of Chae. In two dimensions,
infinite time, damped and driven NS: absence of anomalous dissipation of
enstrophy. (Ramos-C, poster.)



Euler weak solutions: main difficulty

B(u,v) = P(u-Vv) = AH(u ® v)

where
[H(u ® v)]; = Rj(ujv;) + Ri(RpRy(ugvy)),

1
IP is the Leray-Hodge projector, A = (—A)?2 is the Zygmund operator and
R, = 9, A~ 1 are Riesz transforms.

Aq¢(B(u,v)) = Cy(u,v) + I4(u,v)




p>q—2, |[p—p'|<2

Ig(u,v) = Y25 | AgNH(Sgqj—ou, Dgpjv) +
Aq/\H(Sq_|_j_2U, Aq_|_ju) ]

For L2 weak solutions it would be desirable to have a bound of the type

IN"M (B(ug,u1) — B(ug, u)) |lw <

2—a
Cllug — uall [llutll g2 + luzll 2|l
with ¢ > 0 and || f||.w a weak enough norm so that weak convergence in
L? implies convergence in the w norm, (e.g Boos 8 > 3/2) and M as
large as needed. This is true for I(w,v) but not for C(u,v). For weak
1

solutions in ngq, C'(u,v) is good and I (u, v) is bad.



Outlook

eNoO blow up. How to prove it? Geometric estimates (solution determines
space).

e\Weak solutions in right spaces? More nonlinear structure is needed.

eAnomalous dissipation? Maybe for special stationary statistical Euler so-
lutions.



