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Nature of complex singularities for the 2D Euler equation
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Abstract

A detailed study of complex-space singularities of the two-dimensional incompressible Euler equation is performed in the short-time
asymptotic régime when such singularities are very far from the real domain; this allows an exact recursive determination of arbitrarily many
spatial Fourier coefficients. Using high-precision arithmetic we find that the Fourier coefficients of the stream function are given over more than
two decades of wavenumbers by F̂(k) = C(θ)k−αe−kδ(θ), where k = k(cos θ, sin θ). The prefactor exponent α, typically between 5/2 and 8/3,
is determined with an accuracy better than 0.01. It depends on the initial condition but not on θ . The vorticity diverges as s−β , where α+β = 7/2
and s is the distance to the (complex) singular manifold. This new type of non-universal singularity is permitted by the strong reduction of
nonlinearity (depletion) which is associated to incompressibility. Spectral calculations show that the scaling reported above persists well beyond
the time of validity of the short-time asymptotics. A simple model in which the vorticity is treated as a passive scalar is shown analytically to have
universal singularities with exponent α = 5/2.
c© 2006 Elsevier B.V. All rights reserved.
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Und es wallet und siedet und brauset und zischt,
Wie wenn Wasser mit Feuer sich mengt,
Bis zum Himmel spritzet der dampfende Gischt,
Und Flut auf Flut sich ohn’ Ende drängt. . .
Friedrich von Schiller, from Der Taucher [1]

1. Introduction

A quarter of a millennium has elapsed since Euler published
for the first time what is now known as the Euler equations of
hydrodynamics [2]. There has not been much celebration but
this may just reflect our embarrassment at not having made
enough progress. Actually, Leonhard Euler warned us. At the
end of his 1755 paper he wrote: “However all that the Theory
of fluids holds, is contained in the two equations above, so that
in the pursuit of the research we are not lacking the principles of
Mechanics, but solely the Analysis, which is not yet cultivated
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enough for this design: hence we see clearly, which discoveries
are left for us to make in this Science, before we can attain
a more perfect Theory of the motion of fluids”.1 (A paper in
Latin Principia motus fluidorum, published a few years after the
paper in French, contains the basic equations and was already
presented under a different title to the Berlin Academy in 1752.)

Euler considered both the compressible and incompressible
cases. Here we are concerned only with the latter which
is particularly difficult in view of the global nature of the
incompressibility constraint. One of the most important open
questions concerning the “analysis” of the Euler equations is
the well-posedness: does initially smooth 3D flow, which is
known to remain smooth for short times, eventually “blow up”,

1 In French: Cependant tout ce que la Théorie des fluides renferme, est
contenu dans les deux équations rapportées cy-dessus, de sorte que ce ne sont
pas les principes de Méchanique qui nous manquent dans la poursuite de ces
recherches, mais uniquement l’Analyse, qui n’est pas encore assés cultivée,
pour ce dessein: et partant on voit clairement, quelles découvertes nous restent
encore à faire dans cette Science, avant que nous puissions arriver à une Théorie
plus parfaite du mouvement des fluides.

http://www.elsevier.com/locate/physd
mailto:uriel@obs-nice.fr
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that is become singular in a finite time (see, e.g. Refs. [3,4])?
In two dimensions it has been known since the 1930’s that flow
in a bounded domain, initially sufficiently smooth, never blows
up [5,6]. It was also shown that if such a 2D flow is initially
analytic it will stay so forever [7–9]. However, in the course
of time, such flow can develop very fine scales and there is a
large discrepancy between the analytic estimation of how the
smallest scale decreases in time (a double exponential) and
what is found in numerical simulations (a simple exponential;
see, e.g., Ref. [10]).

The likely cause of the discrepancy is depletion, the
phenomenon by which high-Reynolds number or inviscid
incompressible flow tends to organize itself into structures
having vastly reduced nonlinearities (see, e.g., Ref. [11]).
Depletion, which is still very poorly understood, may hold
the key for understanding why 3D high-Reynolds number flow
seems never to blow up, at least in simulations.2 In this paper
we shall focus on the two-dimensional case.

There are well-known 2D examples of depletion, such as
flows which depend only on one Cartesian coordinate or on
the radial polar coordinate. Such flows are however steady and
thus globally depleted, with no dynamics. In this paper we shall
be interested in 2D flow with an initial stream function which
is a real trigonometric polynomial in the space variables, of
the sort already considered in Refs. [4,12]. These are the 2D
counterparts of well-known 3D flows such as Taylor–Green
and Kida–Pelz [13–17] which have been used for (so far
inconclusive) investigation of finite-time blow-up. Our 2D
flows have generally non-trivial dynamics and display locally
very strong depletion.

Trigonometric polynomials are instances of entire functions,
that is, functions which are analytic in the whole complex
domain. The only singularities of such functions are at complex
infinity. The solution of the Euler equations at times t > 0
sufficiently small can then be extended analytically into the
complex domain [7–9]. There is strong numerical evidence
in 2D and also in 3D that such flow does not stay entire
and develops singularities at certain complex locations for any
t > 0 [10,14,4,12]. Complex singularities are usually detected
through the Fourier transforms of the solution: roughly, there
is an exponential tail related to the distance of the nearest
singularity from the real domain, accompanied by an algebraic
prefactor related to the nature (also called type or structure) of
the singularities.

Little is known about the nature of complex singularities
of the Euler equations. In Refs. [4] and [12] it is shown
numerically for the 2D case with the initial stream function
cos x1 + cos 2x2 that the complex singularities lie on a
smooth manifold and that the vorticity becomes infinite
when approaching the singular manifold; there is however
considerable uncertainty as to the scaling law of this
divergence. In Ref. [18] the motion of preexisting complex-
space singularities is studied analytically but their nature is

2 For the case of 3D inviscid Euler flow there is no truly conclusive evidence
in favor of blow-up [4,17]. Furthermore, if the flow is initially analytic, any real
singularity will have to be preceded by complex-space singularities [8,9].
kept quite arbitrary. In Ref. [19] traveling-wave solutions with a
pure imaginary velocity are studied for 3D axisymmetrical flow
with swirl; using an ultra-high precision3 numerical method,
the singularities in the complexified axial variable are mapped
out as a function of the (real) radial variable and found to lie
on a smooth curve; the nature of the singularities is obtained
using a “sliding fit” method. In Ref. [20], for the vortex
sheet problem with an initially analytic interface, the nature of
complex singularities of the interface is obtained using an ultra-
high precision method and a “pointwise fit”. The sliding fit and
the pointwise fit are very closely related to the method we use
in Section 3.1 and we shall come back to this matter. Since the
work of Krasny [21], it appears that ultra-high precision is a
prerequisite for obtaining numerical information on the nature
of singularities, particularly when they are in the complex
domain.

From a theoretical point of view, for many nonlinear
equations of mathematical physics a very successful tool
in studying the nature of singularities has been dominant
balance and its refined versions such as Painlevé analysis
[22]. Dominant balance analysis typically gives universal
singularities, that is singularities whose positions may depend
on the initial conditions but their nature does not. The
simplest instance is the 1D viscous Burgers equation whose
complex-space singularities are simple poles, obtainable by
balancing the nonlinear term against the viscous one. For
the d-dimensional incompressible Euler equations, attempts
to use dominant balance fail because of the particular
structure of the nonlinearity: if we assume that the solution
becomes singular on a complex manifold of dimension d −

1, the nonlinearity vanishes to leading order. This is just a
consequence of the simplest form of depletion, the vanishing
of nonlinearity for solutions which depend on a single spatial
coordinate. The nature of singularities cannot be obtained by a
dominant balance argument; actually, as we shall see, complex
singularities of the 2D Euler equation display a very unusual
non-universality.

In this paper we will mainly discuss the short-time
asymptotic régime presented in Ref. [4] and extensively used in
Ref. [12] which gives us the most accurate information on the
nature of complex singularities.4 After briefly introducing it in
Section 2 we will show that this régime can be reformulated as a
“pseudo-hydrodynamic” Euler problem, in which all the action
including the singularities takes place in a plane extending
in the pure imaginary directions, but our usual hydrodynamic
intuition is still applicable. The short-time asymptotics allows
us to obtain recurrence relations for spatial Fourier components
involving only wavectors k = (k1, k2) with k1 ≥ 0 and k2 ≥ 0,
a feature which is also present in the Moore approximation
for vortex sheets [23] and its generalization to smooth flow
[19]; as a consequence Fourier components can be calculated in
ultra-high precision without any truncation error. In Section 3
we present the numerical evidence for simple scaling laws

3 That is, higher than double precision.
4 Henceforth, Ref. [12] will be cited as MBF.
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associated to complex singularities and determine the nature
of the singularities with high precision. Analyzing short-time
asymptotics for different initial conditions, we find that the
singularities are non-universal. In Section 4 we describe the
global and local geometry of the pseudo-hydrodynamic flow,
including depletion of nonlinearity which is especially strong
near the singularities.

Sections 3 and 4 both involve a mixture of numerical
results and of theoretical arguments, some heuristic, some
more rigorous. We must stress that at the moment we do
understand various features of the solution, in particular why
the scaling exponent for singularities does not depend on the
direction, but we failed so far to reproduce by theory the
non-universal scaling exponents observed for the singularities.
Nevertheless by moving to yet another level of toy-modeling
(the equivalent for our problem of considering the vorticity
as a passive scalar in a prescribed velocity field), we can
determine the nature of the corresponding complex singularities
using dynamical systems tools (Section 5). The nature of these
“advection” singularities is however universal and therefore
does not reproduce an essential feature of the nonlinear Euler
flow. Finally, conclusions, open problems and a tentative road
map for future research on blow-up are presented in Section 6.
To make the present paper reasonably self-contained we shall
occasionally re-derive results already found in Ref. [4] and
MBF.

2. Short-time asymptotics and pseudo-hydrodynamics

We are interested in the short-time asymptotics for the 2D
Euler equation, written in terms of the stream function

∂t∇
2Ψ(x, t)− J (Ψ ,∇2Ψ) = 0, (1)

where x = (x1, x2) and J ( f, g) ≡ ∂1 f ∂2g−∂1g∂2 f . The initial
condition Ψ0(x) ≡ Ψ(x, 0) is a real 2π -periodic trigonometric
polynomial of the form Ψ0(x) =

∑
k F̂ (0)(k) ei k·x, where the

sum has only a finite number of terms. Here k = (k1, k2),
where k1 and k2 are signed integers. The short-time asymptotics
is simplest when the initial condition has only two orthogonal
Fourier modes, as in Refs. [4,12] where the assumed initial
condition is

Ψ0(x) = cos x1 + cos 2x2. (2)

In what follows we shall call this initial condition the Standard
Orthogonal Case (SOC). One of our present goals is to
investigate to what extent complex singularities are or are not
universal; we are thus naturally led to considering more general
cases, having, for example, more than two modes in the initial
conditions. In the Appendix it will be shown that the short-time
asymptotic régime for the multimode case can be reduced to a
set of two-mode initial conditions. We may thus without loss of
generality limit ourselves to two-mode initial conditions of the
form

Ψ0(x) = h1 ei p·x
+ h2 ei q·x

+ c.c. (3)

Here c.c. stands for “complex conjugate”, p = (p1, p2) and
q = (q1, q2) are two vectors with signed integer components.
Furthermore, we assume that p and q are not parallel and do
not have the same modulus since otherwise the two-mode ini-
tial condition is a time-independent solution of the Euler equa-
tion. By performing if needed a suitable translation, we can
then assume that h1 and h2 are positive. Finally, since our goal
here is primarily to demonstrate non-universality of the na-
ture of the singularities with respect to the initial conditions,
we shall not strive for the greatest generality and limit our-
selves to basic modes with non-negative components such that
p1q2 − q1p2 > 0.

Eq. (1) has a solution in the form of a Taylor series in the
time variable

Ψ(x, t) =

∑
n≥0

Ψn(x) tn, (4)

where Ψ0 is the initial condition and the Ψn(x)’s for n ≥ 1 are
easily shown to satisfy the recursion relations:

∇
2Ψn+1 =

1
n + 1

∑
m+p=n

J (Ψm,∇
2Ψp). (5)

For the two-mode initial condition (2) all the Ψn(x) are
trigonometric polynomials that can be continued analytically to
complex locations z = x + i y. Since the initial condition has its
singularities at infinity, we expect, by continuity, that at short
times the singularities will have large imaginary parts |y1| and
|y2|. Let us now suppose that y1 → +∞ and y2 → +∞ in such
a way that their ratio y2/y1 stays finite but arbitrary. Obviously,
the four vectors (p1, p2), (−p1,−p2), (q1, q2) and (−q1,−q2)

divide the k-space into four angular sectors so that, for example,
in the first angular sector p2/p1 ≤ y2/y1 ≤ q2/q1. Then, for z
such that y lies in the first angular sector, to leading order any
additional factor t in the expansion (4) is accompanied by either
a factor e−ip·z or a factor e−iq·z, thus giving amplitude factors
tep·y and teq·y, respectively. When t → 0 and |y| → ∞ these
factors remain finite, provided p · y and q · y are shifted by ln t .
This suggests that the short-time asymptotics is obtained by the
similarity ansatz

Ψ(z, t) = (1/t)F(z̃), (6)

z̃ = (z̃1, z̃2) ≡ (z1 + i λ1 ln t, z2 + i λ2 ln t), (7)

where λ1 and λ2 are determined by

λ1 =
p2 − q2

q1p2 − q2p1
and λ2 =

q1 − p1

q1p2 − q2p1
. (8)

Substitution in (1) gives the similarity equation

∇̃
2(−1 + i λ1∂̃z1 + i λ2∂̃z2)F = J̃ (F, ∇̃2 F), (9)

where the tilde means that the partial derivatives are taken with
respect to the new variables. The initial condition (2) becomes
an asymptotic boundary condition

F(z̃) ' h1e−i p·z̃
+ h2e−i q·z̃, ỹ1 → −∞, ỹ2 → −∞. (10)

In (9) the second and third terms on the l.h.s. can be
viewed as stemming from the advection by a pure imaginary
constant “drift velocity”. This is because we are following
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the singularities coming “down” from complex infinity. It is
important to observe that (9) is an exact consequence of the
Euler equation. The only place where an approximation is made
is in the boundary condition (10) where harmonics containing
for example e+i p·z̃ and e+i q·z̃ are discarded because such terms
are exponentially subdominant at short times.

In what follows we shall generally limit ourselves to the
SOC, giving occasionally an indication of what is valid for
more general two-mode cases. The general case can easily
be handled but we wish to avoid burdening the reader with
unnecessarily complicated statements and equations.

The function F(z̃), which is 2π -periodic in x̃1 and π -
periodic in x̃2, is analytic in the product of the half-spaces
ỹ1 ≤ 0 and ỹ2 ≤ 0 and thus its spatial Fourier series has only
harmonics of the form e−i (k1 z̃1+k2 z̃2) with k1 ≥ 0 and k2 ≥ 0.
Its Fourier series is here written as5

F(z̃1, z̃2) =

∞∑
k1=0

∞∑
k2=0

(−1)k1 F̂(k1, k2)e−i k1 z̃1e−i k2 z̃2 . (11)

The reason for the presence of the factor (−1)k1 will become
clear shortly. The Fourier coefficients F̂(k) ≡ F̂(k1, k2) can
be calculated recursively from the relation given in MBF which
follows from (9)

F̂(k1, k2) = −
1

k1 + k2/2 − 1
1

|k|2

×

k1∑
p1=0

k2∑
p2=0

(p ∧ k)|k − p|
2 F̂(p1, p2)F̂(k1 − p1, k2 − p2).

(12)

Here, p ∧ k ≡ p1k2 − p2k1. Because there are no Fourier
harmonics with negative k1 or k2, the convolutions in (12)
only involve positive arguments. This feature, which allows
truncation-free determination of Fourier coefficients, is also
present in the Moore approximation for the vortex sheet
problem and in its generalization to axisymmetrical flow [19,
23]. The initialization of the recursion relations requires the
knowledge of the coefficients along the “edges”, that is the half-
lines k1 = 0 and k2 = 0. In the present case F̂(0, 2) = 1/2 and
F̂(1, 0) = −1/2 while all the other edge harmonics are zero.6

It has been shown in MBF that, with the choice made above
in (11), the coefficient F̂(1, 0) is the only one that is negative.
All the other ones are non-negative. This result has so far only
been established by (very solid) numerical computations and
holds for all the two-mode initial conditions studied. As we
shall see, this has important consequences for the geometry of
singularities.

We shall now show that (9) can be reformulated as the
steady solution of a pseudo-hydrodynamic problem in a suitable
imaginary plane. Since we are working with analytic functions,
we can replace the complex partial derivatives ∂̃z1 and ∂̃z2

5 In MBF k1 and k2 were defined with the opposite sign.
6 In the general case of two basic modes p and q, the main change with

respect to the SOC is the replacement in (12) of the denominator k1 + k2/2 − 1
by λ1k1 + λ2k2 − 1, where λ1 and λ2 are defined in (8).
by −i ∂̃y1 and −i ∂̃y2 , holding the x-coordinates fixed. In
terms of such y-derivatives (9) becomes an equation with real
coefficients. If we furthermore choose x1 and x2 such that the
boundary condition (10) becomes real then the solution “above
such points” F is also real. This happens for x1 = 0, π and
for x2 = 0, π/2, π, 3π/2. The positivity of all but one of
the Fourier coefficients defined in (11) with the factor (−1)k1

amounts to stating that, after moving the origin to (π, 0), all but
one of the usual Fourier coefficients of F are positive. As we
shall see in Section 4, this gives us the possibility of analyzing
the (short-time) complex singularities by focusing solely on the
y-plane above (π, 0). This point turns out also to be a center of
symmetry for the Euler flow with the initial condition (2), but it
is not clear whether this matters.7 Henceforth we shall consider
the y-plane above (π, 0).

We define a pseudo-stream function in terms of the y-
coordinates (from now on we drop the tilde on the y variables
for notational simplicity)

ψ(y) = ψ(y1, y2) ≡
1
2

y1 − y2 + F(π + i y1, i y2), (13)

=
1
2

y1 − y2 +

∑
k

F̂(k) ek·y, (14)

where the two linear terms on the r.h.s. have been introduced to
avoid having an additional advection term. Note that because of
these terms, ψ is not the continuation to complex coordinates
of a function periodic in x1 and x2.

It is now elementary to check that (9) and (10) are equivalent
to taking the steady-state (τ -independent) solution of the
pseudo-hydrodynamic equation

∂τ∇
2ψ − J (ψ,∇2ψ) = −∇

2ψ, (15)

with the asymptotic boundary condition (for y1, y2 → −∞)

ψ(y1, y2)−
1
2

y1 + y2 ' −
1
2

ey1 +
1
2

e2y2 . (16)

Here, in order to bring out familiar hydrodynamic notation,
we have introduced a pseudo-time variable τ .8 We are using
∇ = (∂1, ∂2) for ∇y and the Jacobian J has its usual definition
in terms of y-derivatives. We now introduce a pseudo-velocity
and a pseudo-vorticity by the usual definitions9:

v = (v1, v2) ≡ (∂2ψ,−∂1ψ) (17)

= −(1, 1/2)+

∑
k

(k2,−k1) F̂(k) ek·y, (18)

ω ≡ −∇
2ψ, (19)

=

∑
k

−k2 F̂(k) ek·y, (20)

7 Note that streamlines have a hyperbolic structure near (π, 0), but an elliptic
structure near (0, 0) which is also a center of symmetry.

8 If we allow the function F and thus ψ to also depend on t and set
τ = ln(1/t), we obtain precisely (15).

9 The true velocity is actually pure imaginary in the y-plane and the true
vorticity is −ω.
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in terms of which (15) reads

[∂τω] + v · ∇ω + ω = 0, (21)

with the boundary conditions (for y1, y2 → −∞)

v '

(
−1, −

1
2

)
, ω '

1
2

ey1 − 2e2y2 . (22)

For other initial conditions, only the boundary condition (22)
must be modified. The τ -derivative term has been put within
square brackets since we are only interested in the steady-state
solution. Note that the pseudo-hydrodynamic formulation in
the y-plane is that of a quasi-two-dimensional flow in a 3D
container with bottom friction producing a Rayleigh drag. In
this formulation τ → +∞ as we approach the initial instant.
An alternative interpretation is to define τ as ln t , to avoid
reversing the course of time, and then to change the signs of
v and of ω and replace the Rayleigh drag by an instability.

In the pseudo-hydrodynamic formulation it is now obvious
that the problem is invariant under an arbitrary translation
h = (h1, h2) in y-space. By (14), such a translation amounts
to a factor ek·h on the Fourier coefficients F̂(k). It follows,
as noted in MBF, that the set of initial conditions Ψ0(x) =

eh1 cos x1 +e2h2 cos 2x2 is equivalent to the SOC as long as h is
within the analyticity domain. Similarly, a translation in k-space
with integer components (n1, n2) is equivalent to multiplying
F(π+i y1, i y2) by the exponential factor en1 y1+n2 y2 in y-space.
The exponential being an entire function, this changes neither
the positions nor the nature of the singularities at finite distance.

3. Numerical investigation of scaling laws in Fourier space

We shall show in this section that the solution of the
Euler equation in the short-time asymptotic régime defined in
the previous section has remarkably clean scaling properties
in Fourier space. By this we mean that the wavenumber
dependence of the Fourier coefficients is represented as a
decreasing exponential multiplied by an algebraic prefactor
whose exponent can be measured very accurately. Such a
functional form is not surprising. In fact the exponential is the
signature of the location of a singularity while the prefactor
encodes the nature of the singularity. For one-dimensional
analytical functions with isolated singularities in the complex
space this is well known: a singularity at z? of the form (z−z?)ρ

has a signature in the modulus of the Fourier transorm at
high wavenumbers k of the form C |k|

−ρ−1e−δ|k|, where δ is
the distance of z? to the real axis (see, e.g., Ref. [24]). Such
asymptotic results have been extended in the 1990’s to the
Fourier transforms of periodic analytical functions of several
complex variables when the wavevector k tends to infinity with
a fixed rational slope tan θ = k2/k1 = p/q , where p and q are
relative prime integers [25–27].

When the Fourier coefficients are obtained numerically,
there is a maximum wavenumber kmax. Unless it is taken very
large, there will be very few points on the line of slope p/q
as soon as q is not a very small integer. But a large value of
kmax entails extremely small Fourier coefficients because of the
exponential decrease with the wavenumber. Thus, as stressed in
Fig. 1. Fourier coefficients of the stream function F along two lines of different
slopes as a function of k ≡ |k| in lin–log coordinates.

Fig. 2. Same as in Fig. 1 after division by exp(−δk) (compensated Fourier
coefficients) in log–log coordinates. Most of the points are in the asymptotic
power-law régime, at least visually.

MBF, very high precision may be needed to avoid swamping
by the rounding errors. Truncation errors are not an issue in the
short-time asymptotic régime since the Fourier coefficients can
be calculated from (12) with arbitrary accuracy.

The data obtained for the SOC initial condition in MBF
had wavenumbers k ≡ |k| up to 1000 or 2000, depending
on the direction and were calculated with 35-digit accuracy.10

Most of the results presented here are based on the 35-digit
calculation. Additional calculations are also presented here with
various initial conditions, with up to 100-digit precision and
wavenumbers which can reach 4000 in particular directions. We
note that the MPFUN90 package for high-precision calculation
used in MBF, here and in Ref. [19] makes use of fast Fourier
transform techniques. Thus the CPU time per multiplication, as
a function of the number of digits N , is proportional to N log N
[28].

We now show that it is quite easy in principle to observe
scaling by analyzing the behavior of the Fourier coefficients in
directions of rational slope. Figs. 1 and 2 give two examples of
the analysis of Fourier coefficients along straight lines through

10 In MBF it was stated that, when using only double-precision (15-digit)
accuracy, unacceptably large errors are obtained beyond wavenumber 800.
Actually, as pointed out by Zimmermann (private communication), the double-
precision calculation can be modified in such a way that, up to wavenumber
1000, the relative error on Fourier modes does not exceed 10−5.
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the origin11 in a direction of rational slope, using the data
from MBF for the Fourier coefficients of the stream function
with SOC initial conditions. The first case has k2/k1 = 2, the
direction with the largest number of grid points having non-
vanishing Fourier coefficients. The second case has k2/k1 =

18/11, the direction with the slowest decrease of the Fourier
coefficients. Fig. 1, which shows the Fourier coefficients in
lin–log coordinates, reveals an exponential tail ∝ e−δk ; a least
square fit gives δ = 0.021 for the first case and δ = 0.0065 for
the second case.12 In Fig. 2 we show the “compensated” Fourier
coefficients obtained by dividing by the exponential term; the
result is then represented in log–log coordinates in order to look
for an algebraic prefactor ∝ k−α . The quality of the scaling
obtained is impressive: over most of the range we cannot on a
log–log plot visually distinguish the prefactor from a power law
with exponent α = 8/3. As we shall see, the exponent does not
depend on the direction chosen.

3.1. Technique for capturing algebraic prefactors

Determining the scaling properties as done above by use of
least square fits, compensating exponentials and log–log plots
is not optimally adapted for delicate issues such as studying the
dependence of the prefactor exponent on the direction of the
wavector or on the initial conditions. As pointed out by Shelley
[20], it is better to remove some of the subjective biases present
in a least square fit (such as choosing the range in k). We shall
make use of his method of point-wise fit (also used in Ref. [19],
where it is called a sliding fit), followed by an extrapolation step
as now explained.

In k-space, a direction of rational positive slope is
characterized by k2/k1 = tan θ = q/p (where the positive
integers p and q are taken to be relative primes). All the k
vectors on the line of slope p/q through the origin are thus
of the form k = nk0, where k0 ≡ (p, q) and n is a positive
integer. What we have seen at the beginning of Section 3
suggests that for a given direction of rational slope tan θ , the
Fourier coefficients of the stream function can be represented,
for sufficiently large k, as

F̂ ' C(θ)k−α(θ)e−δ(θ)k . (23)

Henceforth α, C and δ will be referred to as the prefactor
exponent, the constant and the decrement, respectively. When
there is no ambiguity, the θ -dependence will be omitted.
Following Ref. [20], let us assume for a moment that (23) holds
exactly and let us set F̂n(k0) ≡ F̂(nk0). It then follows that if
we know F̂n(k0) for any three consecutive values, say n − 1, n
and n + 1, we can determine C , α and δ by

α =

ln
(

F̂n−1(k0)F̂n+1(k0)

F̂2
n (k0)

)
ln
(

n2

(n−1)(n+1)

) , (24)

11 All the lattice lines of a given rational slope have the same high-k
asymptotics, due to the observation made at the end of Section 2.
12 Why the minimum value is so small is a matter we shall come back to in

Section 5.
Fig. 3. Local prefactor exponent αloc(k) versus wavenumber for two values of
the slope.

δ =
1

|k0|

[
ln

(
F̂n(k0)

F̂n+1(k0)

)
+ α ln

(
n

n + 1

)]
, (25)

ln C = ln F̂n(k0)+ α ln [(n)|k0|] + n|k0|δ. (26)

The expression (24) for α follows immediately by noticing
that in the combination F̂n−1 F̂n+1/F̂2

n the constant C and the
exponential factor both drop out. The other two expressions are
readily established by taking the logarithm of (23).

Of course, we have no reason to expect that (23) holds ex-
actly for arbitrary wavenumbers. At best it will hold asymp-
totically at large wavenumbers. Nevertheless we can use (25)
and (26) to calculate a local prefactor exponent αloc(k), which
depends on the wavenumber. Here we have chosen to use as
arguments of the local quantities the wavenumber k = n|k0|.

The typical behavior of αloc(k) is shown in Fig. 3 for
two directions. For large values of k the curves grow to an
asymptotic value close to 8/3. Globally, αloc(k) is found to be
non-monotonic when θ < θ? with tan θ? close to 3 (but not very
sharply defined) and monotonic above θ?.

To estimate the asymptotic value α∞ we must extrapolate
the data beyond the largest available wavenumber at which they
are known with acceptable accuracy. Since the only causes of
error in αloc(k) are rounding errors, we can measure such errors
by comparing runs having different levels of precision. Fig. 4
shows the discrepancy (absolute error) of αloc(k) obtained with
15- and 35-digit precision. The error is seen to grow with
the wavenumber in an approximately exponential fashion, the
highest value being about 10−8 around wavenumber 1000. We
shall see that the error involved in the extrapolation may be
much larger than 10−8.

One well-known difficulty with extrapolation is that the
problem may not be well-posed unless one has additional
information on the functional form of the convergence to zero
of the remainder α∞ − αloc(k). In Ref. [20], which deals with
the shape of a vortex sheet continued analytically to complex
parameters, it is assumed that branch singularities of unknown
exponent are present and that the high-k behavior of the one-
dimensional Fourier transform can be obtained from Laplace’s
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Fig. 4. Discrepancy between 15- and 35-digit calculation of the local prefactor
exponent αloc(k) along k2/k1 = 5/3, as an estimate of the absolute error on
αloc.

method to leading and first subleading orders; the inclusion
of the first subleading correction allows a much improved
determination of the exponent. This extrapolation procedure
is equivalent to assuming that the remainder α∞ − αloc(k)
goes to zero as 1/k. For our problem, unfortunately no simple
functional form of the remainder, such as algebraic, exponential
or inverse logarithmic decrease, gives a satisfactory fit. An
efficient extrapolation method for a wide range of functional
behaviors of the remainder is the epsilon algorithm of Wynn
[29], related to the Shanks transform method [30]. It is an
algorithm for acceleration of convergence of a sequence S =

(s(0), s(1), s(2), . . . , s(i)) ∈ C, and it comprises the following
initialization and iterative phases.
Initialization: For n = 0, 1, 2, . . .

ε
(n)
−1 = 0 (artificially), ε

(n)
0 = s(n). (27)

Iteration: For n = 0, 1, 2, . . .

ε
(n)
l+1 = ε

(n+1)
l−1 + [ε

(n+1)
l − ε

(n)
l ]

−1. (28)

After a few iterations of the algorithm, applied to 35-digit
SOC data, the ε(n)l ’s with even l become almost constant and
give an estimate of the extrapolated exponents (see Fig. 5).
The epsilon-algorithm extrapolated exponents will be used
when discussing results (unless otherwise stated). We have also
used the recently introduced asymptotic interpolation method
of van der Hoeven [31] which strips off successively leading
and subleading terms by suitable transformations before doing
the interpolation. This method works impressively for the
passive scalar model discussed in Section 5 for which both
leading and subleading terms in the high-k expansion can be
determined from numerical data. In the nonlinear case, the
asymptotic interpolation method gives exponents consistent
with those determined by the epsilon algorithm with a relative
error of about 10−3; we have so far not been able to determine
numerically the functional form of subleading corrections. As
we shall see in Section 4.3, theory tells us that α should not
depend on the angle θ . We suspect that θ -dependent subleading
corrections account for the slight apparent variation of α with
θ , reported in Section 3.2.
Fig. 5. Local prefactor exponent α̃loc(n) for the nth point along the line
k2/k1 = 5/3 which has (k1, k2) = (5n, 3n); it is shown together with
its second- and fourth-order epsilon-algorithm extrapolated values. Inset:
enlargement for n > 50.

Fig. 6. Angular dependence of the prefactor exponent α(θ) for the SOC
(extrapolated by the epsilon algorithm). Below θ = 0.2π (long dashed line)
the extrapolation cannot be trusted.

3.2. Results for the SOC

For the SOC, whose initial stream function is cos x1 +

cos 2x2, we now use the method described in Section 3.1 to
calculate the prefactor exponent α(θ), the decrement δ(θ) and
the constant C(θ).

Figs. 6–8 show the angular variation of α, δ and C ,
respectively, excluding near-edge ranges where θ is close to 0
or π/2 which deserve separate discussion (see Section 3.4).

The most striking result is the very weak angular dependence
of the prefactor exponent, which over the range 0.2π < θ <

0.45π is given by α = 2.66 ± 0.01, consistent with the
theory which predicts independence on θ (Section 4.3). This
immediately leads to asking if αSOC = 8/3. The short answer
is: we do not know. We shall come back to this at length.

The angular dependence of δ has already been reported
in MBF where it was measured by decomposing the set of
directions into small angular sectors.13 We find that δ(θ)

13 In MBF θ was varying in the third quadrant; here, because of the
aforementioned change of notation θ varies in the first quadrant. Furthermore,
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Fig. 7. Angular dependence of the decrement δ(θ) for SOC.

Fig. 8. Angular dependence of the constant C(θ) for SOC.

achieves a minimum value δ? ≈ 0.0065 at θ? ≈ 0.324π and
it becomes large near the edges. In MBF it was reported that
the shell-summed amplitude of F̂(k)

A(k) ≡

∑
k≤|k|≤k+1

|F̂(k)|, (29)

a kind of discrete angle average, behaves as C ′k−2.16e−δ?k for
large k. This is consistent with the present result. Indeed for
large k, we can evaluate the shell sums (29) by integrating over
kdθ using (23) and steepest descent near θ?. This changes the
prefactor from k−α to k−α+1−1/2

≈ k−2.16.
Finally, C(θ) is quite flat in the interval 0.1 < θ < 0.4.

3.3. Non-universality of the scaling exponent

Having established the angle-independence of the prefactor
exponent, we now investigate its dependence on the initial
condition. What happens when we change from the SOC (given
by (2)) to another initial condition? Since 35-digit computations
take up to one month of CPU, we generally used 15-digit

the method used in MBF was less accurate than the present one and there are
thus small discrepancies in the values reported.
Fig. 9. Angular dependence of the prefactor exponent α(θ) for the “45-degree”
initial condition Ψ0(x) = cos 2x1 + cos(x1 + x2).

accuracy but there is one important exception (see below). At
first we changed the SOC to

Ψ0(x) = cos x1 + cos 3x2, (30)

for which the basic modes in the short-time asymptotics are
(1, 0) and (0, 3) between which there is the same 90-degree
angle as for the SOC. The prefactor exponent was again
indistinguishably close to 8/3. For a while this led us to
conjecturing the universality of the 8/3 exponent. Well . . . until
we tried

Ψ0(x) = cos(x1 + x2)+ cos 2x2, (31)

whose basic modes are (1, 1) and (0, 2), forming an angle of
45 degrees. This gave us an exponent α ≈ 2.54. The same
exponent was obtained with

Ψ0(x) = cos(x1 + x2)+ cos px2, (32)

with p = 1, 3, 4, whose basic modes are different but also
form an angle of 45 degrees. We also did some exploration of
the direction dependence of α and, just as for the SOC, did not
find any. As we shall see in Section 4.3, independence on the
direction can be shown to hold.

All this was pointing towards non-universality of the
prefactor exponent, that is dependence on the initial condition
or at least on the angle between the basic modes. To ascertain
the non-universality we performed a 100-digit computation for
(31) with kmax = 1000. Fig. 9 gives the epsilon-algorithm
extrapolated values of the local prefactor exponent for this
calculation as a function of θ .

Except near the edges the exponent stays very close to
2.54.14 The discrepancy between 2.54 and 2.66 vastly exceeds
the estimated error on the prefactor exponent, as discussed in
Section 3.1. Finally, we report that for all cases discussed in
this section on non-universality, the positivity of all the Fourier
coefficients except one holds, just as for the SOC.

14 The anomalously low value around θ/π = 0.42 is caused by a large
denominator in the corresponding slope (79/21) which does not permit a
reliable determination of α.
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3.4. Intermediate asymptotics near the edges

In this section we discuss only the SOC, but the theoretical
results presented are easily generalized. We have seen that on
any line of strictly positive and finite rational slope the Fourier
coefficients decrease exponentially at high k (up to algebraic
prefactors). This is not true for lines of vanishing and infinite
slope. We can explicitly calculate from the recursion relation
(12) all the coefficients having either k2 = 2 or k1 = 1. Indeed
along such “edge lines” the recursion relations take the form of
first-order linear homogeneous finite difference equations

F̂(k1, 2) =
1
k1

k2
1 − 2k1 + 4

k2
1 + 22

F̂(k1 − 1, 2), (33)

F̂(1, k2) =
2
k2

k2
2 − 4k2 + 1

1 + k2
2

F̂(1, k2 − 2). (34)

At large orders, essentially each coefficient on a horizontal
or vertical edge line is obtained by dividing by k1 or k2/2
the adjacent lower-order coefficient. Thus they are decreasing
roughly as 1/k1! or 1/(k2/2)!. More precisely, using standard
asymptotic methods for difference equations [32], it is easily
shown that for integer m → ∞

F̂(m, 2) ∼ F̂(1, 2m) ∼ m−5/2emm−m, (35)

which decreases faster than exponentially.
If we now consider a “near edge” direction with θ close to

0 or to π/2 we expect that the edge behavior will manifest
itself as intermediate asymptotics making it hard to obtain clean
scaling for the prefactor. We can however easily predict the
θ -dependence of the decrement δ by the following argument.
When θ is small, the line through the origin of slope tan θ ≈ θ

will intersect the edge k2 = 2 at k1 ≈ 2/θ . At this point, by
(35), the logarithm of the Fourier amplitude is given to leading
order by −(2/θ) ln(2/θ). Assuming that, on the line of slope
θ , this point is within the region of exponential fall-off with
decrement δ(θ), we obtain

−(2/θ) ln(2/θ) ≈ −(2/θ)δ(θ), (36)

which gives (for θ → 0)

δ(θ) ≈ ln
(

2
θ

)
. (37)

Near the other edge, we obtain by a similar argument (for
θ → π/2)

δ(θ) ≈
1
2

ln
(

1
π − 2θ

)
. (38)

We turn now to numerical study of the near edge behavior
of Fourier coefficients. So far we have determined such
coefficients in regions having comparable extensions in the
k1 and k2 directions. The structure of the recursion relation
allows us however to determine the coefficients in rectangular
domains having a very small or very large aspect ratio. We
have seen that the local prefactor exponent behaves non-
monotonically with the wavenumber when θ is below a critical
Fig. 10. Wavenumber dependence of local prefactor exponent αloc for various
small θ . Inset: dαloc(k)/dk.

Fig. 11. Angle dependence of the decrement δ for small θ in lin–log
coordinates (crosses). The continuous line is the theoretical prediction.

value.15 Consistently, we have found that for small θ ’s a more
complex behavior is observed than for θ ’s close to π/2. We
have thus studied the former in more detail. Because of the
slow convergence to asymptotics we need wavenumbers much
larger than in MBF, so we used rectangular domains of size
4000 × 480 near θ = 0 and of size 200 × 4000 near θ = π/2.
Fig. 10 shows the variation with the wavenumber of the local
prefactor exponent αloc(k) for various small θ ’s. It is seen that
when θ decreases, the wavenumber at which αloc(k) achieves
its minimum increases and thus the extrapolation of α becomes
more difficult. The situation is much more favorable for the
determination of the decrement, because it is (logarithmically)
large.

Fig. 11 shows the measured decrement together with a
theoretical prediction δ(θ) = ln(2/θ) − 1 which includes
a subleading correction to the leading-order prediction (37),
obtained by a partially heuristic procedure. Near θ = π/2 the
decrement has also logarithmic scaling (not shown), consistent
with the leading-order prediction (38) but not very clean. As
to the constant C(θ), we found that it becomes large near the
edges. For θ → 0 the behavior is roughly C(θ) ∝ 1/θ but

15 This may be related to the fact that the global structure seen in Fig. 14 is
far from being symmetrical in y1 and y2.
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Fig. 12. Contours of the absolute value of the Fourier coefficients (logarithmic
scale) of the stream function at t = 0.8 by full spectral simulation for the SOC.

there are substantial uncertainties because the constant C is
quite sensitive to small errors made on δ and α.

3.5. Beyond short times

In MBF it was shown, for the SOC initial condition,
that deviations from short-time asymptotics become important
around t = 0.1. More precisely, deviations from the law
δ(t) ∝ ln(1/t) become visible (see Fig. 2 of MBF). We now
investigate numerically the issue of persistence of the k−2.66

law for the SOC beyond the time of validity of short-time
asymptotics. For this we must use a full spectral simulation
with time-marching as in Refs. [4,12]. A priori there is no need
to use a resolution in excess of 10242 since we shall see that
the k−2.66 law deteriorates significantly after t = 1. At that
time, the decrement δ ≈ 0.4, which implies that the flow is
extremely well resolved with 10242 modes. Fig. 12 shows the
behavior of the absolute value16 of the Fourier coefficients of
the stream function at t = 0.8 in the (k1, k2)-plane (because
of the Hermitian symmetry we are not showing negative k1).
It is seen that there is a direction of slowest decrease which
has k2/k1 ≈ 1. At short times the slowest decrease had
k2/k1 ≈ 18/11 but this direction changes in the course of
time. Fig. 13 shows the usual exponential decrease with an
algebraic prefactor for the Fourier amplitude in the direction
of slope unity at t = 0.8. Beyond wavenumber 85, rounding
errors take over (the calculation has 15-digit precision). The
same procedure, applied at much later times, for example at
t = 1.9, still shows some kind of exponential tail but the data
are far too wiggly to permit the extraction of a reliable power-
law prefactor. We have also repeated the analysis beyond short
times for the flow with initial condition cos(x1 + x2)+ cos 2x2,
where the basic modes make an angle of 45 degrees. At time
t = 1.4 the prefactor exponent is around 2.58, quite close to the
value 2.54 reported at short times.

16 Because of the symmetry of the SOC, the Fourier coefficients are real.
Fig. 13. Absolute value of the Fourier coefficients of the stream function at
t = 0.8 along the rational direction k2/k1 = 1 in lin–log coordinates. A least
square fit (continuous line) gives ck−2.68e−0.429k . The inset shows the same
data after division by e−0.429k in log–log coordinates.

Let us now discuss some of the limitations involved in the
search for prefactor scaling beyond the short-time asymptotics.
We begin with practical limitations. With 10242 modes the
direction of rational slope k2/k1 = 1 has about 30 points before
encountering 15-digit rounding level. Other directions have
typically only ten points and this makes precise determination
of the decrement δ and the prefactor exponent α impossible. We
thus cannot comment on any possible angular dependence of
α. Calculations with higher resolution require higher precision
in order to lower the rounding noise level and this in turn
requires enormous computer resources by a time-marching full
spectral method if we demand that temporal truncation error be
at rounding level.

There is a more fundamental issue regarding the validity of
the short-time asymptotic régime. For the SOC, this régime
breaks down around t = 0.1, as far as the temporal behavior
of δ(t) is concerned. Actually the short-time approximation is
strongly non-uniform with respect to the wavenumber: high
wavenumbers show discrepancies at much earlier times than
0.1. For example we know that, in the short-time régime, all
the Fourier coefficients except one are non-negative, but as
early as t = 10−3, a 90-digit calculation by time-marching
shows that Fourier coefficients start oscillating in sign beyond
wavenumber forty.17 By t = 0.8 such oscillations are found
in the 15-digit calculation whenever k2/k1 > 2, irrespective
of wavenumber. In the presence of such oscillations, the
functional form we have used in the short-time asymptotics
∝ k−αe−δk is clearly invalid. What is happening has a
geometric interpretation which is more readily understood
after reading the first page of Section 4. In the short-time
régime the positivity of the Fourier coefficients implies that
the singular manifold is in the y-plane. Note, however, that in
this régime we are ignoring interactions with Fourier harmonics

17 It matters how precisely we let t → 0 and k → ∞. For a fixed value of t ,
however small, the high-k régime discussed in most of this paper may be just
an intermediate asymptotic régime. It is conceivable that the non-universality
found here is confined to this particular asymptotic régime.
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from quadrants other than the first one since they only
contribute subdominant terms in the short-time expansion of the
hydrodynamic fields. When such terms are taken into account
it is likely that singularities obtained at leading order will be
mostly advected by a modified velocity field which carries the
singularities slightly out of the y-plane without changing their
nature, as happens in the work of Tanveer and Speziale [18].
Of course, positivity of the Fourier coefficients will be lost but
not necessarily their scaling properties. Observe also that the y-
plane being a plane of symmetry, this picture implies that there
are several pieces of the singular manifold very close to the
y-plane. In Fourier space they produce a kind of interference
pattern which at first has very long wavelength (in k). This
wavelength becomes shorter and shorter as time advances and
the singular manifold moves further away from the y-plane.18

4. The geometry of the pseudo-hydrodynamic flow

In two-dimensional simulations of hydrodynamics, consid-
erable insight is usually obtained by looking at flow features
in the physical space. This is much simpler in two dimen-
sions than in three, provided that the relevant features are in the
real R2 space. Here the most important features are in the com-
plex C2 space, which is equivalent to having four real dimen-
sions. Fortunately, as explained in Section 2, we can make use
of only two real dimensions by working in the y-plane above
(z1, z2) = (π, 0) which extends in the (pure) imaginary di-
rections. As already briefly mentioned in Section 4 of MBF,
the positivity of all the Fourier coefficients F̂(k1, k2) (except
F̂(1, 0)) and the exponential decrease with the wavenumber im-
ply that the solution to the (short-time asymptotic) Euler equa-
tion has a line of singularities S in the (y1, y2)-plane. Indeed,
since only harmonics with non-negative k1 and k2 are present,
we may rewrite (13) and (14) as a Taylor series in two variables

ψ(y)−
1
2

y1 + y2 =

∞∑
k1=0

∞∑
k2=0

F̂(k1, k2) ζ
k1
1 ζ

k2
2 , (39)

ζ1 ≡ ey1 , ζ2 ≡ ey2 . (40)

If we now hold y2 (and thus ζ2) fixed and sum over k2, we
obtain a Taylor series in ζ1 such that all its coefficients (except
possibly the first one) are positive. By Vivanti’s theorem [33],
if such a series has a finite radius of convergence (as is the
case here because of the aforementioned exponential decrease),
the singularity in the complex ζ1-plane nearest to the origin
is on the positive real axis at a location y1 = y?1(y2), which
depends on y2. The function y?1(y2) defines an object which
we here call the singular manifold and is the edge of the
analyticity domain y1 < y?1(y2).19 A standard theorem about
multi-dimensional Taylor series states that their domain of
convergence is logarithmically convex (see, e.g., Ref. [34]).

18 Somewhat similar interference patterns are obtained when the short-time
asymptotics is extended to the Navier–Stokes equation (with viscosity scaling
as 1/t).
19 More correctly, the singular manifold is a (perhaps analytic) manifold in
C2 whose intersection with the y-plane is designated here by the same name.
Fig. 14. Global geometry of the flow in the y-plane. Streamlines (solid lines)
and iso-vorticity lines (thin-dotted lines) are shown. Thick-solid-crenated line:
singular manifold; thick-solid line: U-turn separatrix (ψ ≈ 0.5); thick-dashed
line: vorticity separatrix (ω = 0 and ψ = ln 2). The ticks on the two
axes correspond to coordinate 0.25. Inset: Contours of absolute value of the
cotangent of the angle between the streamlines and the iso-vorticity lines as a
measure of depletion of nonlinearity.

In our case this just means that the analyticity domain in the
y-plane is convex. As shown in MBF using slightly different
notation, the singular manifold can be constructed either as the
envelope of the family of straight lines y1 cos θ + y2 sin θ =

δ(θ) (where the decrement δ has been defined in Section 3) or
as the envelope of analyticity disks.

To numerically construct the pseudo-hydrodynamic solution
in the y-plane from the Fourier data we use (14) for the
stream function, (18) for the velocity and (20) for the vorticity.
Although our Fourier data typically have 35 decimal digits,
it suffices to truncate them to 16 digits to obtain the various
relevant fields in y-space with a good accuracy.

4.1. Presentation of the y-plane results

We begin with global topological features and then turn to
a more local and more quantitative description. Fig. 14 gives
a global view of the flow in the y-plane.20 The outer edge of
the flow region, which passes very close to the origin is the
singular manifold. At large distances on the upper left and the
lower right, respectively, the singular manifold has logarithmic
branches. Close to the singular manifold, the streamlines follow
it until they make a U-turn and eventually plunge into the third
quadrant (y1 < 0, y2 < 0) where they become straight with
slope 1/2 at large distances. An important feature is the U-
turn separatrix, above which stream lines make U-turns which

20 When magnifying this figure, ADOBE READER R© 7 or higher is
recommended.
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Fig. 15. Enlargements of Fig. 14 around the point (y1, y2) = (0.8, −1.0)
showing the streamlines (upper figure) and the vorticity contours (lower figure).
Only negative vorticity contours are shown.

become increasingly sharp when moving to the lower right, and
below which there are no U-turns. Vorticity contours starting
close to the singular manifold far on the upper left get pressed
increasingly close into the singular manifold when moving
to the lower right. The vorticity separatrix divides negative
vorticity (above) and positive vorticity (below). It approaches
the singular manifold in the lower right but not as fast as the U-
turn separatrix. In view of the Jacobian formulation of the Euler
equation, the vorticity separatrix is clearly also a streamline.
Hence, the strong depletion of nonlinearity evidenced by
accumulation of contour lines near this separatrix on the inset of
Fig. 14. The depletion is here measured by plotting the absolute
value of the cotangent of the angle between ∇ψ and ∇ω.

Fig. 15 shows the stream function and the vorticity with
more details in a region of particular interest. Increasingly
sharp U-turns of the stream lines are seen when moving to the
Fig. 16. Upper figure: stream function ψ , velocity components (suitably
rescaled) vn and vt normal and parallel to the singular manifold along the
line of cut normal to the singular manifold passing through the origin, shown
as a dashed-dotted line on Fig. 14. U and S identify the places where the
cut intersects the U-turn separatrix and the vorticity separatrix. Lower figure:
negative vorticity along the same cut in log–log coordinates.

lower right into the narrowing channel separating the singular
manifold from the U-turn separatrix. It is seen that the vorticity
becomes very large and negative near the singular manifold,
while the stream function remains finite with a value around
ψ = 0.5, the same as on the U-turn separatrix. Thus, the
singular manifold, which is simultaneously a limiting case
of a streamline and of a vorticity contour, displays strong
depletion of nonlinearity as seen on the inset of Fig. 14. We also
looked at the velocity field (not shown); close to the singular
manifold the velocity is parallel to this manifold and decreases
in modulus when moving down and to the right. Note that,
contrary to the vorticity, the velocity does not grow explosively
when approaching the singular manifold; there is no numerical
evidence against the plausible assumption that the velocity has
a finite limit on the singular manifold which is tangent to this
manifold. Similarly, the pressure (not shown) also appears to
have a finite limit on the singular manifold.

For a better quantitative grasp we show in Fig. 16 a one-
dimensional cut of the two-dimensional fields along the normal
to the singular manifold passing through the origin, shown
as a dashed-dotted line on Fig. 14. It is seen that the stream
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function takes the finite value ψsing ≈ 0.5 on the singular
manifold and the same value at the U-turn separatrix and that
the vorticity follows approximately a power law −ω ∝ s−β

with 0.7 < β < 0.9, where s is the distance to the singular
manifold. The scaling is however rather poor; it gets even worse
when repeating the same analysis along the other dashed line
normal to the singular manifold, shown on Fig. 14. It is also
seen that at the singular manifold the normal velocity vanishes
linearly. We now turn to comments and theoretical explanation
of most of these features.

4.2. Bridging k-space and y-space results

As we shall now see, it is quite obvious to relate the leading-
order asymptotics (23) of the Fourier coefficients at large k
and the leading-order behavior near the singular manifold in
y-space. To explain the poor scaling observed for the vorticity
in y-space, we need to take into account subleading corrections
as we shall also discuss. The “Fourier–Laplace” representations
(14), (18) and (20) for the (pseudo-hydrodynamic) stream
function, the velocity and the vorticity, connect k- and y-space
functions. Consider, for example, the vorticity; using (23) and
polar coordinates k = k(cos θ, sin θ) we can rewrite it as

ω(y ) = −

∑
k

C(θ)k−α+2e−kh(θ;y), (41)

h(θ; y) ≡ δ(θ)− y1 cos θ − y2 sin θ. (42)

The convergence properties at high wavenumbers of this sum
will depend crucially on the sign of the decrement h(θ; y). If

min
θ

h(θ; y) > 0, (43)

all the exponentials are decaying and the sum will be finite. If
the minimum is negative, the sum is divergent. In the borderline
case of a vanishing minimum, the algebraic prefactors will
determine convergence. If δ(θ) is a smooth function of θ , as
our numerical results suggest, the minimum corresponds to a
vanishing derivative with respect to θ . Hence, the borderline
case is characterized by the following two equations:

δ(θ)− y1 cos θ − y2 sin θ = 0, (44)

δ′(θ)+ y1 sin θ − y2 cos θ = 0, (45)

where δ′(θ) is the derivative of δ(θ). Those points y?(θ) =

(y?1, y?2) which satisfy (44) and (45) are on the singular
manifold. Conversely, δ(θ) is the distance from the origin
to the tangent at the singular manifold which has the slope
θ − π/2 (see Fig. 17). It follows that the singular manifold is
the envelope of such lines. In MBF this result was derived by
Poincaré’s pinching argument.

From (44) and (45) it is easily shown that the near-edge
behavior of δ(θ) given by (37) and (38) implies logarithmic
branches for the singular manifold: y2 ' (1/2) ln(−y1) for
large negative y1 and y1 ' ln(−y2) for large negative y2.

We observe that s ≡ minθ h(θ; y) is the shortest Euclidean
distance of y to the singular manifold, with a plus sign when
y is below the singular manifold and a minus sign when it is
above. Let us assume that y is below or on the singular manifold
Fig. 17. Construction of the singular manifold from the logarithmic decrement
δ(θ).

and let us denote by θ?( y) the value of θ where the minimum
is achieved. Near this minimum we can Taylor-expand the
decrement

h(θ; y) = s +
1
2

h′′
?(θ − θ?)

2
+ O((θ − θ?)

3), (46)

where h′′
? ≡ ∂2h(θ?, y)/∂θ2. The convergence of the sum (41)

depends only on the high-k behavior, where we can, to leading
order, replace the sum by an integral over kdkdθ , to obtain a
“continuous approximation”

ωcont( y) = −

∫ 2π

0
dθ
∫

∞

0
dk C(θ)k−α+3 e−kh(θ;y). (47)

When s vanishes or is small and positive, we can evaluate the
angular integral in (47) by steepest descent

ωcont( y?) ' −C(θ?)

√
2π
h′′
?

∫
∞

0
dkk−α+5/2 e−ks . (48)

On the singular manifold, s = 0 and it is clear that the integral
over k is ultraviolet-divergent as soon as α ≥ 3/2. All the
values of the prefactor exponent α considered in this paper are
at least 5/2 and thus give an infinite vorticity at the singular
manifold. The same analysis applied to the stream function and
to the velocity gives ultraviolet-convergent integrals. For small
positive s, we obtain from (48)

ωcont( y?) ' −C(θ?)

√
2π
h′′
?

Γ (7/2 − α) s−β , (49)

β =
7
2

− α, (50)

where Γ (·) denotes the Gamma function.
For SOC initial conditions, α ≈ 8/3, and thus the vorticity

diverges to leading order with a s−5/6 law, when approaching
the singular manifold. The subleading corrections causing the
poor scaling seen in Section 4.1 are of various sorts. First, there
are subleading corrections to (23) whose simplest manifestation
is the discrepancy between the local scaling exponent αloc(k)
and its extrapolated value α∞, as discussed in Section 3.1.
As already stated, we do not know the functional form of
such corrections. Second, there are subleading corrections
coming from having approximated the Fourier–Laplace sums
by integrals. It is easily shown that they contribute O(s0) to the
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Fig. 18. Same as lower part of Fig. 16 but for the synthetic data with various
values of the maximum wavenumber n. Inset: corresponding logarithmic local
slopes. The predicted scaling exponent is −5/6.

vorticity in y-space. Third, there are the subleading corrections
to the continuous approximation (47), which may be shown to
be O(s−1/3). A simple way to determine how much the scaling
is degraded by the second and third type of corrections is to
use synthetic data for which the Fourier coefficients are given
exactly by (23). It is then easy to change the resolution n × n
and to find out how large n should be for clean leading-order
scaling to emerge. We performed such a calculation with C and
α constant and the values of δ(θ) taken from the actual Euler
SOC data. From the synthetic data, using (20) we then calculate
a synthetic vorticity ωsynth( y) just as in Section 4.1. Fig. 18
shows −ωsynth( y) in log–log coordinates for three values of n.
The lowest one, n = 1000, is comparable to what is used in the
actual Euler calculation: the scaling is very poor. Only when we
increase the resolution more than tenfold to n = 11,000 do we
begin to see a clean s−5/6 scaling.

4.3. Theory of y-plane pseudo-hydrodynamics

The starting point for theory in the y-plane is of course
the pseudo-hydrodynamic vorticity equation and its boundary
conditions far into the third quadrant, derived in Section 2 and
repeated here for convenience:

v · ∇ω + ω = 0, (51)

v '

(
−1, −

1
2

)
, ω '

1
2

ey1 − 2e2y2 , y1, y2 → −∞. (52)

Alternatively we can rewrite (51) as J (ψ, ω) = ω or as
J (ψ, ln |ω|) = 1. Thus the map from (y1, y2) to (ψ, ln |ω|) is
area preserving. The vorticity separatrix was defined by ω = 0;
so that the Jacobian of the stream function and of the vorticity
is zero along this line. Hence it is also a streamline.21 It is easily
shown that the value of the streamfunction on this line is ln 2.
Indeed, as we follow the vorticity separatrix far into the third

21 By changing ω into 1/ω in (51), we can show similarly that the singular
manifold, at which 1/ω = 0, is also a streamline.
quadrant, we obtain from (52) that y1 ' 2y2 + 2 ln 2. Since
ψ = (1/2)y1 − y2 (up to exponentially small terms), we obtain
the result claimed. We have also checked numerically that the
value of the stream function on the vorticity separatrix is ln 2 to
at least three decimal places.

Depletion of nonlinearity near the singular manifold
prevents us from using the dynamical equation (51) to derive
the scaling exponent of the singularities by, for example,
balancing to leading order the two terms in (51). Nevertheless,
such balancing gives some useful information, such as the
vanishing of the normal component vn(s) of the velocity near
the singular manifold (for s → 0) and the independence on
position of the exponent β characterizing the divergence of the
vorticity. Since β and the prefactor exponent α are related by
α + β = 7/2, this will establish the independence of α on θ ,
which was rather strongly supported by the numerical results
reported in Section 3. We now derive these results. In what
follows, points y? on the singular manifold are parameterized
by the angle θ between the y1-axis and the outgoing normal.

To show the vanishing of vn(s) for s → 0, it is convenient
to use as local coordinates near the singular manifold the angle
θ and the distance s. We denote by vn(s, θ) and vt (s, θ) the
components of the velocity along the inward normal and along
the tangent in the direction of increasing θ . For small s, to
leading order, (51) becomes[
vn(s, θ)∂s + vt (s, θ)

1
R(θ)

∂θ

]
ω(s, θ) ' −ω(s, θ), (53)

where R(θ) is the radius of curvature of the singular manifold
(the arclength is given by R(θ)dθ ). We now assume that ω ∝

s−β (with β > 0). If vn(0, θ) did not vanish, the first term on
the l.h.s. of (53) would be proportional to s−β−1, which for
small s could not be balanced by any of the other terms of
the equation. The argument actually implies the stronger result
that the normal velocity vn cannot vanish more slowly than s1.
The technique of Section 4.2 on bridging k-space and y-space
results can be used to show that ∂vn/∂s remains finite at the
singular manifold, although it has the same dimension as the
vorticity which becomes infinite.22 Thus vn actually vanishes
linearly with s.

For the independence of β on θ , we integrate (51) along a
typical streamline passing near the singular manifold between
two points M0 (far from the singular manifold) and M1 (within
a small distance s1), so that there is a U-turn in between which
is assumed not to be close to either M0 or M1 (see Fig. 19). We
obtain

ω(M1)

ω(M0)
= exp

{∫ M1

M0

d`
|v(`)|

}
. (54)

The streamline is here parameterized by the arclength `

measured from an arbitrary reference point and growing when
moving into the upper far left, opposite to the direction of

22 In the proof one uses the vanishing of the normal component of the velocity
at the singular manifold, a consequence of the singular manifold being a
streamline.
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Fig. 19. A typical streamline passing near the singular manifold and
performing a U-turn. Although this figure uses the actual data rather then being
a sketch, the distance between the streamline and the singular manifold has
been somewhat increased for legibility.

Fig. 20. Modulus of the velocity and vorticity (changed sign) versus arclength
` along the streamline shown in Fig. 19 which has ψ ≈ 0.47. The point M0 is
taken near ` = 2.5; the U-turn, M1 and M2 are near ` = 3, ` = 3.2, ` = 3.5,
respectively.

the velocity. When moving from M0 to M1 the smallest
velocities and thus the leading-order contribution to the integral∫ M1

M0
d`/|v(`)| are expected to come from the immediate

neighborhood of the U-turn. We have checked this conjecture
numerically by calculating the vorticity and the modulus of the
velocity along a streamline chosen to have a rather sharp but
well-resolved U turn (see Fig. 20).

We assume now that the vorticity near the singular manifold
is given to leading order by ω = c(θ)s−β(θ), where we
temporarily leave the possibility that the exponent β depends on
the parameter θ associated to the nearest point on the singular
manifold. We take a second point M2 on the same streamline
but further away from the U-turn. We then have (to leading
order)

ω(M1) ' c(θ1)s
−β(θ1)

1 , (55)

ω(M2) ' c(θ2)s
−β(θ2)

2 , (56)

where (s1, θ1) and (s2, θ2) are the local coordinates for M1 and
M2. From (54), applied successively to M1 and M2, we find that

ω(M2)

ω(M1)
' exp

{∫ M2

M1

d`
|v(`)|

}
. (57)
Between M1 and M2 the streamline is close to the singular
manifold and the velocity is dominated by its tangential
component; hence we can replace the r.h.s. of (57) by an
integral along the singular manifold and obtain to leading order

ω(M2)

ω(M1)
' K12 ≡ exp

{∫ θ2

θ1

dθ
R(θ)

vt (θ)

}
, (58)

which depends neither on s1 nor on s2. We now observe that the
solenoidal character of the velocity implies (again to leading
order)

s1vt (θ1) ' s2vt (θ2). (59)

It follows from (58) and (59) that

ω(M2) ' c2

[
s1v1

v2

]−β(θ2)

' K12 c1s−β(θ1)

1 . (60)

Comparison of the middle and the rightmost members gives

β(θ1) = β(θ2), c2 = K12 c1

[
v1

v2

]β
. (61)

This establishes the independence of the vorticity scaling
exponent on θ .

5. A passive scalar model

As shown in Ref. [35], simple advection of a passive scalar
by a prescribed velocity field with just a few Fourier harmonics
can easily lead to singularities because fluid particles may come
from or go to (complex) infinity in a finite time. In the present
context of short-time asymptotics, the equivalent of a passive
scalar model is to treat the (pseudo-hydrodynamic) vorticity ω
in (21) as a passive scalar advected by a prescribed velocity.
The simplest prescribed velocity we can take is

vP(y) =

(
−1, −

1
2

)
+

(
e2y2 ,

1
2

ey1

)
, (62)

obtained from the stream function

ψP ≡
1
2

y1 − y2 −
1
2

ey1 +
1
2

e2y2 . (63)

This velocity field includes the drift (−1, −1/2) resulting from
the shifts of the original coordinates by terms proportional
to ln t and the contributions from the basic modes. For our
passive scalar model we use the vorticity equation (21) with the
inclusion of an inhomogeneous term whose precise form does
not matter (as long as it does not have itself any singularity): the
singularities of the passive vorticity stem solely from advection.
Specifically, the passive scalar model is defined by

vP · ∇ω + ω =
3
2

ey1+2y2 , (64)

where the r.h.s. is taken to be the interaction term of the two
basic modes. It is easy to write down Fourier-space recursion
relations for this model and to show that all the Fourier
coefficients are positive. Numerical solution of the recursion
relations gives the usual type of scaling with a very clean
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Fig. 21. Streamlines in the y plane for the passive scalar model given by (63),
which has a hyperbolic stagnation point at the origin. Thick line with arrows
pointing to the origin: stable manifold of the associated dynamical system (65)
which is also the singular manifold for the vorticity. Thick line with arrows
pointing away from the origin: unstable manifold.

prefactor exponent α = 5/2.23 In the y-space this implies a
blow-up of the vorticity ω ∝ s−1 as function of the distance s
to the singular manifold.

Actually all these results can be derived in a rather
straightforward manner by working in the y-space, as we now
explain. Eq. (64) can be integrated along the characteristics.
For this we consider the conservative dynamical system of fluid
particle trajectories in the velocity field vP:

d
dτ

y = vP(y). (65)

The integral lines are the lines ψP = const., which are shown in
Fig. 21. At the origin there is a hyperbolic stagnation point near
which we have ψP = −(1/4)y2

1 + y2
2 + O(|y|3). The associated

unstable manifold is simply y1 = 2y2, while the stable manifold
is the other solution to ψP = 0.

This hyperbolic stagnation point at the origin completely
determines the scaling of the vorticity. Indeed, in Section 4.3
we derived from the vorticity equation (21) an expression
(54) which shows that large vorticities stem from low-velocity
regions. This derivation, which did not make use of the fact
that the vorticity is the curl of the velocity, remains valid for
the passive scalar model (except for minor changes due to the
presence of an inhomogeneous term). In the fully nonlinear
case, the low velocities were due to the increasingly sharp U-
turns described in Section 4.1. In the present much simpler case,
they are just due to the passage near the hyperbolic stagnation
point. As we follow a streamline upstream (i.e. to increasing
arclengths ` in the notation of Section 4.3) we come closer and
closer to the stable manifold. The latter thus plays the role of the
singular manifold. By the same argument as used in Section 4.3
the scaling of the vorticity near the stable/singular manifold is
the same everywhere. It suffices to determine it locally near
the stagnation point. One way is to parameterize the streamline

23 With the already cited asymptotic interpolation method [31] the exponent
α is found to differ from 5/2 by less than 10−11.
by the distance s to the stable manifold (more precisely to its
tangent at the origin, since we are doing a local analysis). By
(54), the growth of the vorticity is controlled by

exp
{∫ ` d`′

|v(`′)|

}
= exp

{∫ s ds′

vn(s′)

}
, (66)

where vn(s) is the velocity component along the (inward)
normal n = (−1/

√
5, −2/

√
5) to the stable manifold at the

origin. Near a hyperbolic stagnation point we have vn(s) =

λs + O(s2), where λ is the positive eigenvalue of the velocity
gradient ∂iv j at the stagnation point. Here, it is elementary to
show that λ = 1. Using this in (66) we find that the vorticity
ω ∝ s−1, as claimed. This argument is easily adapted to the
passive scalar models for other two-mode initial conditions,
such as those discussed in Section 3.3. The same s−1 behavior
is always obtained, which is thus universal, contrary to what
happens in the full nonlinear case.

Although the passive scalar model does not predict the
exact and non-universal character of the vorticity blow-up for
the full nonlinear problem, the singular manifold is given
quite accurately by the passive scalar model. In particular it
is immediately checked that both have the same logarithmic
branches (at least to leading order). Furthermore, in the passive
scalar model the stable/singular manifold goes exactly through
the origin while in the full nonlinear problem it passes within
a distance δ ≈ 0.0065, as shown in MBF. It may be that such
agreements are due to the presence of very strong depletion of
nonlinearity in the full problem, thereby making a simple linear
advection model quite relevant.

Actually, the passive scalar model can be systematically
improved by enriching the prescribed velocity field through
addition of higher-order modes. A simple way to do this
is to take all the Fourier modes such that k1 + k2/2 ≤

n + 1. For SOC, we have studied these “enriched” passive
scalar models for various values of n. They all possess a
hyperbolic stagnation point. The associated positive eigenvalue
λn becomes larger than unity when n ≥ 1. The first few values
for the corresponding prefactor exponent αn = 7/2 − 1/λn are:
α0 = 2.5, α1 ≈ 2.594, α2 ≈ 2.613. For larger values of n,
the growth is very slow; for example α20 ≈ 2.618. We also
observed that, as n grows, the stagnation point moves to the
right and down and the angle between its stable and unstable
manifolds decreases. It is likely that, for n → ∞, the stagnation
point is pushed to infinity in such a way that its stable and
unstable manifold tend to the singular manifold and to the U-
turn separatrix for the nonlinear problem, while αn → α, but
the convergence may be slow.

6. Conclusion

The present paper, like Refs. [4] and MBF, is mainly
concerned with the short-time asymptotics of the 2D Euler
equation in situations where complex-space singularities are
born at infinity at time t = 0+. Let us first summarize the
main findings of this work, which uses a mixture of ultra-
high precision computations (with up to 100-digit accuracy)
and of theory. Our work is specifically concerned with initial
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conditions in the form of a trigonometric polynomial; it is
shown in the Appendix that this problem can generically
be reduced to one with only two modes. A very detailed
description of the complex singularities is given. For all cases
studied, the Fourier coefficients except one are found to be
non-negative (this was already reported for SOC in MBF). In
any direction of rational slope tan θ not too close to the edges
of the Fourier domain, the coefficients of the stream function
converge very quickly with increasing wavenumbers k to the
form C(θ)k−αe−kδ(θ). The prefactor exponent α, determined
with better than one per cent accuracy, is independent of θ but
is not universal: when the initial modes are orthogonal, it is
indistinguishable from 8/3 ≈ 2.66, whereas with a 45 degree
angle between the initial modes it takes the value 2.54. We
cannot rule out that α depends also on the moduli of the initial
modes but we have no evidence that it does.

It is shown that the singularity problem can be reformulated
as an ordinary steady-state (pseudo)hydrodynamic problem in a
suitable y-plane corresponding to pure imaginary coordinates.
The complex singularities are in this y-plane on a smooth
(possibly analytic) curve extending to infinity with logarithmic
branches. The vorticity diverges as s−β , where s is the distance
to the singular manifold and α + β = 7/2. We give a
full description of the geometry of streamlines and vorticity
contours in the y-plane (Fig. 14). Increasingly sharp U-turns
of the streamlines near the lower logarithmic branch of the
singular manifold give rise to the vorticity scaling. Very strong
depletion of nonlinearity near the singular manifold prevents
application of dominant balance to determine the scaling
exponent of singularities and is likely to be the reason for the
very unusual non-universality of the singularities. Finally it is
shown that the scaling behavior of the prefactor persists in time
significantly beyond the validity of the short-time asymptotics,
at least as intermediate asymptotics. However, we do not know
if the non-universality of the singularities found in the short-
time régime carries over to the full Euler equation.

The main theoretical shortcomings of this work are our
inability so far to prove the positivity of Fourier coefficients and
to derive the prefactor exponent α (or the vorticity divergence
exponent β) from the initial conditions (we also failed to
identify the nature of subleading corrections to (23)). We have
nevertheless gained some qualitative understanding with the
passive scalar model of Section 5 that ignores the back reaction
of the vorticity on the velocity but which sheds interesting light
on the mechanism for producing singularities. In this toy model,
scaling is controlled by a stagnation point of the velocity field,
whereas in the full nonlinear problem the stagnation point is
rejected to infinity.

We have described our findings in some detail, hoping that
colleagues will be able to help us with the missing theory.

In principle the methods used for the 2D short-time Euler
problem can be extended to various other short-time problems.
One instance is the short-time régime for the 2D ideal
incompressible MHD equations. A preliminary study for this
case indicates that the positivity result does not survive: Fourier
amplitudes display oscillations revealing a richer geometry of
the singular manifold which can no more be captured in terms
of just the imaginary coordinates y. In mathematical terms,
one has to study the amoeba and coamoeba of the singular
manifold.24 Oscillations can be handled by techniques similar
to those discussed here, as has already been done in Ref. [19].

Another natural extension of our study is to the 3D Euler
equations which also have a short-time régime. This is rather
straightforward. A direct extension of the algorithm used in two
dimensions requires CPU resources (time complexity) propor-
tional to k6

max instead of k4
max. This becomes prohibitively large

when kmax exceeds a few hundred. In principle, the time com-
plexity can be reduced to k3

max (with logarithmic corrections)
by using FFT’s and the recent technique of “relaxed multiplica-
tions” [37]. However, in the calculations reported in MBF and
the present paper the magnitude of Fourier coefficients can vary
by several hundred orders of magnitude; this requires special
precautions when applying FFT’s unless one is prepared to use
several hundred digits.

We remind the reader that our long term goal is to find
out about blow-up in three dimensions (3D). We hope this
will not take another 250 years. Progress may however be
painfully slow if, as we expect, numerical experimentation is
to play an important part. Indeed, the amazingly fast growth
of computer power observed over the last 50 years becomes
much less spectacular when translated in terms of resolution
achievable in 3D simulations.25 As more powerful computers
become available for investigation of 3D blow-up, it would not
be advisable to use the new resources exclusively for increasing
the spatial resolution. Experience on the advantage of ultra-
high precision for singularity studies from the work of Krasny
[21], Shelley [20], Caflisch [19] and also from our own work
suggest that it is not safe to use less than 30–35 digits. Using
flows with symmetries such as the Taylor–Green [13,14] or the
Kida–Pelz [15–17] flow to boost the resolution introduces a
possible element of non-genericity, but we can always use such
flows to sharpen our tools and then, as computers become more
powerful, turn to flows without symmetry.

Have the results reported in MBF and the present paper
brought us closer to this Holy Grail of 3D blow-up? In a direct
way, we cannot infer anything regarding 3D real blow-up from
a 2D study of complex singularities at short times. We have
however learned that in this rather restricted framework, sin-
gularities are located on very smooth objects (possibly analytic
manifolds); because the fastest spatial variation is then in the
direction perpendicular to the singular manifold, the singulari-
ties have strongly depleted nonlinearity in a suitable frame. We
have already good evidence that in 2D this smoothness prop-
erty is not limited to the short-time régime [4]. In 3D such a

24 In d-dimensional algebraic geometry one deals with an algebraic manifold
in complex coordinates ζ1, . . . ζd and the amoeba is defined as the image
of the manifold under the map ζ1 7→ y1 ≡ ln |ζ1|, . . . , ζd 7→ yd ≡

ln |ζd |. The coamoeba is similarly defined in terms of the argument functions
of the ζ ’s. The complex exponentials e−i z1 , . . . , e−i zd , play here the role
of the ζi ’s. The name amoeba has been proposed by Gelfand et al. [36]
because amoebae sometimes have pseudopods resembling those of microscopic
protozoa. Coamoebae have been introduced by Tsikh and Passare (private
communication).
25 At the moment the highest resolution accessible in 15-digit precision for

three-dimensional flow without any special symmetries is 20483 [38,39].
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property would be both a curse, since dominant balance cannot
be used, and perhaps a blessing, since it might well slow down
(indefinitely?) the approach of singularities to the real domain.
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Appendix. Reduction of multimode initial conditions

Here we shall show that the short-time asymptotics of
two-dimensional Euler flows with generic initial conditions of
trigonometric polynomial type can be reduced to the study of
two-mode initial conditions. In Section 2 we have seen that
with two initial modes p and q the behavior of the stream
function Ψ(z, t) for large imaginary arguments |y1|, |y2| can
be described by the similarity ansatz (6) and (7). It relies on
the fact that when y is such that p2/p1 ≤ y2/y1 ≤ q2/q1
the leading-order factors accompanying each factor t in the
time–Taylor expansion (4) are either e−ip·z or e−iq·z. In the limit
|y| → ∞, t → 0 we can make such terms finite by shifting
simultaneously p · y and q · y by ln t .

The similarity ansatz as explained above is however not
applicable to the case of more than two initial modes. Instead,
we have to reduce the multimode initial condition to various
two-mode problems which can be handled in the usual way.
Let us illustrate this by looking at a simple three-mode initial
condition

Ψ0(x) = h1eip·x
+ h2eiq·x

+ +h3eir·x
+ c.c., (A.1)

in which the vectors p, q and r are listed in angular
counterclockwise order. As in Section 2, to avoid pathologies,
we assume that the vectors p, q, r are not parallel and not of the
same length. In the Taylor expansion (4) each factor t will now
be accompanied by a factor e−ip·z, e−iq·z or e−ir·z. Note that,
in the limit |y| → ∞, t → 0, we cannot simultaneously make
the terms tep·y, teq·y and ter·y remain finite. Indeed, we cannot
translate y in such a way that all three scalar products p · y, q · y
and r·y are shifted by ln t . If p2/p1 ≤ y2/y1 ≤ q2/q1 the factors
tep·y and teq·y will dominate, while if q2/q1 ≤ y2/y1 ≤ r2/r1
the factors teq·y and ter·y will dominate. In each case the three-
mode initial condition (A.1) is reduced to a two-mode problem
involving either p and q or q and r.

Let us now turn to the general multimode case with an initial
stream function of the form

Ψ0(z1, z2) =

∑
(k1,k2)∈supp F̂ (0)

F̂ (0)(k1, k2)e−ik1z1 e−ik2z2 . (A.2)

Here, we assume Hermitian symmetry26 F̂ (0) ∗(k1, k2) =

F̂ (0)(−k1,−k2) and we take the sum over all wavevectors
for which the Fourier coefficients F̂ (0)(k1, k2) do not vanish,
called the support of F̂ (0) and denoted supp F̂ (0). The fact that
supp F̂ (0) is a finite set plays a crucial part in our analysis. Let
us suppose for simplicity that all initial modes have different
lengths, that is |(k′

1, k′

2)| 6= |(k′′

1 , k′′

2 )| for all pairs (k′

1, k′

2) and
(k′′

1 , k′′

2 ) ∈ supp F̂ (0).
As we have seen before, it is necessary to distinguish

between different directions in the y-space when taking the
limits |y| → ∞, t → 0. Therefore we let |y1|, |y2| → ∞

while keeping the ratio y2/y1 fixed. By Hermitian symmetry, it
is enough to consider only the case y1 → +∞. Assuming as in
Section 2 that

Ψ(z, t) =

∞∑
n=0

Ψn(z) tn, (A.3)

and denoting by F̂ (n)(k) the Fourier coefficients of Ψn
we obtain easily from the Euler equation the following
recursion relations for the Fourier coefficients of the (n + 1)th
“generation”:

F̂ (n+1)(k1, k2) = −
1

n + 1
1

|k|2

×

∑
m+p=n

∑
k′+k′′=k

(k′
∧ k′′)|k′′

|
2 F̂ (m)(k′

1, k′

2)F̂
(p)(k′′

1 , k′′

2 ),

(A.4)

which allows us to compute F̂ (n+1)(k) in terms of the previous
generations F̂ (m)(k) and F̂ (p)(k)with m, p ≥ 0 and m+ p = n.
From (A.4) it follows immediately that F̂ (n) has finitely many
non-vanishing modes.

We now identify the modes in the nth generation which give
the leading-order contributions to Ψn(z) for a fixed ratio y2/y1.
For this we use the notion of Newton polytope of supp F̂ (0).
It is defined as the convex hull (in the usual sense) of the set
supp F̂ (0), as for example represented (taking into account the
Hermitian symmetry) on Fig. 22 for a typical initial condition.
We shall call relevant those initial modes lying on the boundary
of the Newton polytope of supp F̂ (0) (black circles indicated by
arrows on Fig. 22). The relevant modes divide the k-space into

26 In fact, this condition is not essential. We could as well consider more
general sets supp F̂(0).
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Fig. 22. Construction of relevant Fourier modes in various angular sectors.
Black circles: initial modes; dash-dotted lines: boundary of the Newton
polytope of the initial modes; white circles: higher-order modes associated to
nth generation. Thick lines show the edges of the various angular sectors.

angular sectors, analogously to the three-mode case presented
above.

Let now k′ and k′′ be two relevant modes defining an angular
sector such that k′

∧ k′′ > 0. The vectors k′ and k′′ define
an angular sector in the y-space such that k′

2/k′

1 ≤ y2/y1 ≤

k′′

2/k′′

1 . For these directions the leading-order terms in Ψn(z)
are proportional to e(n

′k′
+n′′k′′)·y with n′, n′′

≥ 1 and n′
+

n′′
= n + 1; the terms corresponding to other Fourier modes

are subdominant. Clearly, we would have obtained the same
dominant terms if we had started from just the two initial modes
k′ and k′′. We can now apply the similarity ansatz, shifting k′

· y
and k′′

· y by ln t . Let us remark that while it is possible to
eliminate the time variable by a global similarity ansatz for two-
mode asymptotics, it is in general impossible to do so for more
than two modes.

In the exceptional cases where two or more relevant modes
have the same length one must take into account the fact that
the Fourier coefficient of their sum vanishes. The description of
the leading-order contributions in the nth generation becomes
slightly more involved than in the generic case, but the leading-
order behavior in a fixed direction y2/y1 is still dominated by
two-mode asymptotics.

Summarizing, we have shown that the study of the short-
time asymptotics of Euler flows with multimode initial
conditions can be reduced to the analysis of various two-mode
asymptotics in angular sectors defined by a suitable set of
relevant initial modes, namely those on the boundary of the
Newton polytope of the initial modes.
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