Gravitational-Wave Universe seen by Pulsar Timing Arrays

Séminaire Lagrange, OCA mardi 4 septembre 2018

Chiara M. F. Mingarelli Center for Computational Astrophysics, Flatiron Institute

Outline

- The gravitational-wave spectrum
- Pulsar Timing Arrays: how they work
- Gravitational-wave background: final parsec problem
- Nearby *continuous* gravitational-wave sources
- How these can induce **anisotropy** in the background
- Cutting edge: Gaia for improved pulsar distances, Fermi targeted searches, constraining the scatter in black hole galaxy scaling relations

I would love to talk about...

- FRBs as EM counterparts to black hole neutron star mergers (CMFM, Levin, Lazio 2015)
- Constraining tensor-to-scalar ratio "r" and tensor index "n_t" in primordial gravitational-wave backgrounds (Lasky, CMFM, Smith et al. 2016)
- On the Amplitude and Stokes Parameters of a Stochastic Gravitational-Wave Background (C. Conneely, A. H. Jaffe, **CMFM**) arXiv:1808.05920
- Cosmic string tension upper limits from PTAs (all collaboration papers!)
- Strongly lensed AGN as PTA sources: lensed GWs! (Mingarelli & Barnacka, in prep)

FLATIRON INSTITUTE

The Gravitational-Wave Spectrum

Characteristic Strain

Frequency (Hz)

•Complementary GW detectors •LIGO can't see PTA! •Strain = t / T•<u>25 Myrs in band</u>

CMFM & Mingarelli (2018, accepted)

Pulsars

- compact
- rapidly rotating
- high magnetic field
- remnants of supernova explosions
- Excellent clocks!

50-year anniversary!

Pulsars in our galaxy

Pulsars

GWs correlate pulsar residuals

A galactic-scale GW detector!

z=1.11

ILLUSTRIS

TREE REPORT

Animation from John Rowe Animation/Australia Telescope National Facility, CSIRO

Excellent clocks = GW Detectors

Expected pulse number N at an observed arrive time t is expressed as Taylor Series:

$$N = \nu_0(t - t_0) + \frac{1}{2}\dot{\nu}(t - t_0)^2 + \frac{1}{6}\ddot{\nu}(t - t_0)^3 + \cdots$$

- Residual r(t) = Expected Actual arrival time
- Look for fraction frequency shift in timing residual: input into GW analysis $r(t) = \int^t \delta\nu(t')/\nu_0 dt'$

FLATIRON

Key Project in Radio Astronomy

Westerbork, The Netherlands

Arecibo, Puerto Rico

Goostrey, United Kingdom

courtesy Joe Lazio

FLATIRON INSTITUTE

Gravitational-Wave Backgrounds

 Γ_0^0

See Hellings & Downs 1983, CMFM+2013, CMFM + Mingarelli (2018)

- Hellings and Downs curve
- Assumes background is isotropic (but is it?)
- Pulsar correlations create "curve"
- Changes for alternative theories of gravity and anisotropic GWBs

180

160

chirp mass per comoving volume $h_c = A \left(\frac{f}{\mathrm{vr}^{-1}}\right)^{-2/3}$

Phinney (2001); Jaffe & Backer (2003); Sesana (2013)

Supermassive Black Hole Binaries

number of mergers remnants

 $\Omega_{\rm gw}(f) = \frac{2\pi^2}{3H_0^2} f^2 h_c^2$

We know a lot about A, can learn more

Surge in the field in last 10 years, here are the latest results!

 $A < 3 \times 10^{-15}$ EPTA isotropic : Lentati, Taylor, CMFM + 2015; EPTA anisotropic: Taylor, CMFM, Sesana + 2015; < 40% 18-year data in Desvignes, Caballero, Lentati + (w CMFM) 2016;

 $A < 1.5 \times 10^{-15}$ NANOGrav: Arzoumanian +(w CMFM) 2018; 11-yr Data: Arzoumanian +(w CMFM) 2018; $A < 1.7 \times 10^{-15}$ IPTA: Verbiest + (w CMFM) 2016; PPTA: Shannon, Ravi, Lentati + 2015; $A < 1 \times 10^{-15}$

FLATIRON INSTITUTE

Final Parsec Problem?

Astrophysics affecting GW spectrum

Galaxy Population Uncertainties

- Merger timescale
- SMBH host relations
- Pair fraction
- Redshift evolution

Burke-Spolaor (2015)

1E-07

1E-06

Sampson et al. (2015)

- Arzoumanian et al. (2016, 2018)
- Middleton et al. (2018)
- Ryu et al. (2018) and Bonetti et al. (2018): 3-body interactions, floor for GWB

Time to detection?

- Given A < 1e-15, how long to detection?
- Large, expanding PTAs, e.g. NANOGRAV, will detect in < 5 yrs, first see 2-sigma hint!
- blue line = no stalling, red line = 90%stalling, dashed line = 1/11yr turnover due to stellar hardening
- More: arXiv:1602.06301

Taylor, Vallisneri, Ellis, CMFM, van Haasteren, Lazio, ApJL (2016)

Expected detection probability [%]

What you've learned so far...

- Pulsars are excellent clocks: use them to look for gravitational waves.
- Searches for GWs from supermassive black hole binaries (nHz)
- The GWB contains information about SMBHB mergers, encoded in the amplitude of the background and the shape of the strain spectrum
- Can optimize PTA sensitivity using **Fermi**.
- Detection of GWB depends on this underlying astrophysics!

Which nearby galaxies host SMBHBs?

CMFM et al., Nature Astronomy (2017)

Which galaxies host SMBHBs? Time to Detection? Background?

Also Simon et al. (2014)

2MASS + Illustris MBH-Mbulge McConnell & Ma 2013) 91 +/- 7 local SMBHBs 7+/- 2 stalled

Detected with current PTA data

5,119 galaxies 2MASS galaxy distribution

 $\log_{10}(h)$, GW sky at f = 3.79e-09 Hz

Babak et al. 2016 J1909-3744 J1600-3053 J1744-1134 J1713+0747 J1012+5307 J0613-0200

Time to detection of single sources

FAP now **Factor of 4!** 0.05 (2 σ) sky location 3e-3 (3 σ) 0.5% (0.03%) 9% (0.2%) 48% (0.3%)

5 yrs **10 yrs** 2% (0.09%) 24% (0.3%) 100% (0.8%) **1e-4** (4 σ) 0.3% (0.01%) 4% (0.08%) 27% (0.2%)

CMFM et al. (2017), Nature Astronomy

FLATIRON INSTITUTE

Earth term

$M = 10^9 M_{\odot}$

$(v/c \times 10^{-2})$	Time span	Δf (nHz)	Total	Newtonian	$p^1\mathbf{N}$	p ^{1.5} N	Sp
14.6	10 yr	3.22	32.1	31.7	0.9	-0.7	
9.6	-1 kpc	71.2	4305.1	4267.8	77.3	-45.8	
11.6	10 yr	0.24	15.8	15.7	0.3	-0.2	
9.4	-1 kpc	23.1	3533.1	3504.8	53.5	-28.7	

CMFM et al. (2012), Phys. Rev. Lett

Limits on GWB Anisotropy

Summary

- PTA interdisciplinary science experiment: radio, optical, and gamma ray astronomy, fundamental physics, galaxy evolution, SMBH environments and more!
- Already placing astrophysical constraints on SMBHB environments via GW spectrum
- New: EPTA and NANOGrav (in prep) limit stochastic background anisotropy
- Evidence for GWB appearing soon, detection in ~ 5 years, local sources ~ 10 years
- **Can now build GW skies from galaxy surveys:** create GW backgrounds to learn about underlying astrophysics: final parsec problem, binary eccentricity, more!

The orchestra is warming up... and we've only heard the violin

