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Abstract The cesam code is a consistent set of pro-
grams and routines which perform calculations of 1D
quasi-hydrostatic stellar evolution including microscopic
diffusion of chemical species and diffusion of angular mo-
mentum. The solution of the quasi-static equilibrium is
performed by a collocation method based on piecewise
polynomials approximations projected on a B-spline ba-
sis; that allows stable and robust calculations, and the
exact restitution of the solution, not only at grid points,
even for the discontinuous variables. Other advantages
are the monitoring by only one parameter of the accu-
racy and its improvement by super-convergence. An au-
tomatic mesh refinement has been designed for adjusting
the localisations of grid points according to the changes
of unknowns. For standard models, the evolution of the
chemical composition is solved by stiffly stable schemes
of orders up to four; in the convection zones mixing and
evolution of chemical are simultaneous. The solution of
the diffusion equation employs the Galerkin finite ele-
ments scheme; the mixing of chemicals is then performed
by a strong turbulent diffusion. A precise restoration of
the atmosphere is allowed for.
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1 Introduction to CESAM.

Within the limitations due to electronic degeneracy, ce-
sam allows the computation of the quasi-static evolution
of stellar models as long as the assumption of quasi-static
equilibrium remains valid, that is to say, until the ex-
haustion of oxygen in the core. The modular structure
of cesam facilitates the choices among several physical
formalisms, for equation of state (hereafter EOS), con-
vection, opacities, diffusion coefficients, etc... Many nu-
clear networks and initial mixtures are available which
allow to optimise the physical description according to
the kind of model and evolutionary phase of interest.
Mass loss and infall of planetoids are also implemented.

The available packages. Earlier versions, cesam2-3-4,
were programmed in F77 and cesam5 in F90. Though
obsolete, cesam4 and cesam5 are available at:

http://www.obs-nice.fr/morel/CESAM

In the early 2000, cesam was re-programmed in F95 and
named cesam2k. Nowadays three versions of the code
are available:

– The “fixed version” and the “fixed COROT version”,
limited to 3α burning, available for downloads respec-
tively at:

http://www.obs-nice.fr/cesam/

http://perso.obspm.fr/ lebreton/Modeles/CESAM.html

– The “β version” more complete, not fixed, still in
development1 is hereafter signalled by the flag (β).
It includes the evolution up to oxygen burning,the
diffusion of the angular momentum and some other
developments of minor importance. It is available at:

http://www.obs-nice.fr/morel/CESAM

Each package contains five directories and two files :

– “SOURCE”, contains the fortran sources.
– “EXPLOIT”, contains programs to exploit the models

and examples of input files.
1 Not free of bugs.
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– “SUN STAR DATA”, contains physical data and pro-
grams for their implementation.

– “TESTS”, contains programs performing various checks.
– “SCRIPTS”, contains scripts to be used for the im-

plantation and operating, and a MAKEFILE.
– “aide mem2k.ps”, a short guide of directions for use,

the “aide-mémoire” (hereafter Paper 2).
– “cesam2k.ps”, a complete description of numerics

and of the physics implemented, the “notice” (here-
after Paper 3).

The source is structured in fourteen modules : numer-
ics, opacities, convection, etc... All the F95 routines of
the source are compiled once. The requirements for the
calculations are read in external files to be supplied by
the user. The run is interactive. Messages displayed in
French, or in English, allow the control of calculations.
The extent of convection zones, a H–R diagram, and
the profiles of the temperature, pressure, luminosity and
abundances are displayed2 on line.
cesam has been especially designed to facilitate the im-
plementation of various physical constants, opacities, EOS,
atmosphere, nuclear networks... So that, its overall struc-
ture is separated in two spaces:

1. A “physical space” where the coefficients of the dif-
ferential equations are written in a form close to their
physical formalism.

2. A “numerical space” where the differential equations
are formally solved.

Therefore cesam allows to implement physical processes,
and physical data, without any knowledge of numerical
methods involved for the solution of the equations. For
the physics, the use of generic routines makes easier the
reading of the algorithms.

Units and values of physical constants. cesam uses the
cgs units except for the mass, radius and luminosity,
expressed in solar units. Two sets of fundamental physi-
cal constants, are implemented. They correspond to the
values generally accepted in the two last decades (Clay-
ton (1968), Christensen-Dalsgaard (1988), Lide et al.
(1994)), Cox (2000)). For each calculation, one of these
sets is designed as the unique source of fundamental
physical constants. Other constants are initialised lo-
cally, e.g. the mass excesses, in the routine performing
the calculations of thermonuclear reaction rates.

Input files. Most generally only the “input data file”
(hereafter IDF) is needed. The IDF is read at the on-
set of the run. It collects all the requirements needed for
the calculations:

– physical parameters: mass, chemical composition, mixing-
length parameter, etc...

– numerical parameters: maximum number of shells,
kind of precision, etc...

2 Use of the PGPLOT package.

– criteria for halting the computations: age to be reached,
value of the hydrogen abundance at centre, etc...

– names and locations of the external data files of the
tabulated EOS and opacity data, names of the phys-
ical routines to be used, name of the model, of the
set of units to be used etc...

The other input files have only specific functions, among
them the most useful are:

– “mixture” allows the use of an initial mixture not
implemented in cesam.

– “modif mix” allows to modify the abundances of some
species in a mixture already implemented.

– “reglages” allows to personalise the kind of preci-
sion to be used (see below).

– “planet” contains the characteristics of infall of plan-
etoids.

– “rap iso” allows to modify the isotopic ratios.
– “vent” defines the chemical composition of the wind

when it differs from the chemical composition of the
atmosphere.

– “zoom” allows to fit the resolution of the display for
the plot on line.

– “langue” allows to have the messages in English.

The meaning of all items are explained in Paper 2. Ex-
amples of files are given in the directory EXPLOIT.

Output files. At the issue of each time step, a “return bi-
nary file” (hereafter RBF) is created. It contains all the
data needed to initialise or pursue a computation. There
is the possibility, either to save all RBF, or to keep only
the last RBF created.
On request, “output data file” (hereafter ODF) are cre-
ated. Three ODF are especially designed for adiabatic,
non adiabatic and inversion asteroseismic investigations.
These ODF also serve as input for some programs of the
directory EXPLOIT. An ODF concerns especially the dif-
fusion of the angular momentum (β). All items of output
files are detailed in Paper 2. It is also possible to create
personalised ODF.

The kinds of precision. To optimise the calculations, sets
of parameters, named “réglages”, are fixed according to
the kind of models to be calculated and to their subse-
quent use. The most useful réglages are :

– “realistic precision” for standard evolutions.
– “super precision” used when a high level accuracy

is needed.
– “solar accuracy”, close to super precision, but

especially designed for seismological investigations;
the number of shells of the last model is increased
up to its maximal value.

– “corot”, close to super precision, but especially
designed for investigations connected to CoRot.

– “advanced”, for the computation of early type star
models evolved up to the oxygen burning.
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– “normal precision”, for exploratory work.
– “low mass”, for the computation of late type star

models.
– “reglages”, in that case, the parameters, designed

by the user, are read on an input file named “reglages”.

The larger the expected accuracy, the larger the compu-
tational expense.

Operating data and programs. The directory EXPLOIT
contains :

– examples of input files, i.e. IDF, “reglages”, “planet”,
“modif mix”, etc...

– ASCII files of preliminary models for the initialisa-
tions of PMS and ZAMS models.

– miscellaneous programs make plots of the chemical
composition profile, or an extension of the grid on a
given set of radius, or create the IDF for solar cali-
bration, etc...

The flow chart of cesam is described in Sect. 2. As the
numerical features are detailed in the appendix of Morel
(1997)3 (hereafter Paper I) they are only succinctly re-
called in Sect. 3, except for the automatic allocation of
mesh points described in Sect. 3.1. The restitution of the
atmosphere is outlined in Sect. 4. The algorithms per-
forming the temporal evolution are described in Sect. 5.
The nuclear network is detailed in Sect. 6 and the im-
plementation of the rotation is described in Sect. 7. The
various formalisms of convection implanted in cesam are
described in Sect. 9. Mass loss formalisms and infall of
planetoids are described in Sect. 8. EOS and opacities
data available are listed in Sect. 10.

2 The flow chart.

Initialisations. At the onset of the run, the IDF is read.
Then, the chemical composition is initialised according
to the initial mixture and to the isotopes used by the
nuclear network involved. Then, using fit-formulas (see
Sect. 6.1), the rates of the thermonuclear reactions are
tabulated on a relevant interval of temperatures4. After,
the evolution by itself begins :

– either, it starts from initial, i.e. zero age of PMS or
ZAMS. An initial model, having the characteristics
required, is deduced from a model taken from a RBF,
or from a model in ASCII taken from the directory
EXPLOIT.

– or, it pursues a previous calculation, then the input
is one RBF of the evolution going on.

3 Only available on electronic form.
4 The errors introduced by these interpolations remain

within the error bars of the data.

The evolution. The number of shells is first updated (see
Sect. 3.1). Then, taking the overshootings into account,
the limits between the radiative and the convective mixed
zones (hereafter LMR) are localised. The angular veloc-
ity (β] and the chemical composition are then updated.
In fine, the equations of quasi-static equilibrium for the
interior and the atmosphere, are solved. The process is
repeated until convergence.
When the nuclear engine is on work, the time step con-
trol is first based on the local accuracy achieved for the
numerical integration (see Sect. 6.2 and Sect. 6.3) of
species of relevant interest and, second on a limitation
of the relative changes of helium on the whole star. Oth-
erwise, during the pre-main sequence, the limitation of
the change of mechanical energy controls the time step.
In case of divergence of any iterative algorithm the time
step is halved.

Stop criteria. According to flags, read in the IDF, the
computations may be stopped :

– when the expected age is reached.
– as soon as the central temperature reaches a given

value.
– as soon as the abundance of hydrogen at centre reaches

a given value.
– at the exhaustion of hydrogen at centre
– when the extent of the helium core reaches a given

size.
– when the effective temperature crosses a given value.
– at the ignition of the 3α cycle.
– at the ignition of the carbon cycle.
– at the ignition of the oxygen cycle.

For most kinds of precision, the last time step is adjusted
in order to fulfil the required stop condition.

3 Numerical methods.

Choice of variables. For the numerical integration of the
stellar structure equations, the Lagrangian form is the
most convenient as the discretisation on mass is readily
expressed. However, it presents a singularity at centre
and the core needs to be integrated apart. The Eulerian
form of the equations does not suffer such inconvenience,
but as the stellar radius varies with respect to time, there
is a free boundary (see Stoer & Bulirsch, 1979, par. 7.3).
With the Lagrangian variables : µ ≡M2/3, R2, L2/3, the
central singularity disappears (see Paper I, par. B1) and
there is no need of a special treatment for the core (M
is the mass, L the luminosity and R the radius). To be
consistent, the chemical species are taken as functions
of M2/3. The pressure, P , and the temperature, T , are
expressed in logarithms, (ξ = lnP , η = lnT ), on the
ground that they change by more than six magnitudes
from the centre to the atmosphere.
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Solving the differential equations. The unknowns are ap-
proached by piecewise polynomials with an order defined
according to the required accuracy; the mostly used are
the order 1, i.e. linear piecewise, and the order 2, i.e.
parabolic piecewise. For the stellar modelling that flexi-
ble representation is well adapted to the presence of dis-
continuities resulting from the mixing of the convection
zones.
For the calculations, the piecewise polynomials are pro-
jected on a local linear basis of normalised B-splines
(De Boor, 1978; Schumaker, 1981). That allows to find
back exactly the solution at any location. Moreover, B-
splines basis are also used for solving :

– the two points boundary initial value problems of the
stellar structure and of the atmosphere, by colloca-
tion (De Boor, 1978, ch. XV).

– the diffusion equations of chemicals and of angular
momentum, by finite elements (Quarteroni & Valli,
1994).

The linear systems, involved by the resolution of implicit
equations, are band-diagonal.
However, due to the non-trivial and unfamiliar algebra of
B-splines, the algorithms are much more elaborated than
with the finite differences. On the other hand, efficient
and stable algorithms have been constructed for integra-
tion, differentiation, integration of differential equations
by collocation and, of course for interpolation. In cesam
the routines, especially constructed to manage the calcu-
lations with B-splines, are derived from the algorithms of
Schumaker (1981, chap. 4). Details are given in Paper I.

3.1 Moving grid, mesh refinement and discontinuities
tracking.

An automatic mesh refinement is implemented. At time
t, the locations of the n(t) mesh points are established by
fulfilling the condition that, from a grid point to the next,
the jump of a strictly monotonous “repartition function”,
Q(µ, t), is equal to a “repartition constant” C(t) (Eggle-
ton (1971); Press et al. (1986, sect. 16.5)). The locations
of grid points, µi, i = 1, . . . , n, known at the issue of the
computations, satisfy :

Q(µi+1, t)−Q(µi, t) ≡ C(t), i = 1, . . . , n− 1. (1)

The choice of Q(µ, t) is based on an a priori knowledge of
the behaviour of the solution. For each t, one defines an
“index” function q(µ, t) mapping [0, µb] on [1, n]; the in-
dex 1 (resp. n) corresponds to the centre and the index n

to the surface, i.e. µb = M
2
3
ext. Therefore, the integration

is made on an equidistant grid. In terms of the derivative
of Q with respect to q, Eq. (1) writes :
(
∂ψ

∂q

)

t

= 0, with ψ(t) ≡
(
∂Q

∂q

)

t

.

The change of variables µ→ q(µ, t) :

ψ(t) = θ

(
∂µ

∂q

)

t

, with θ(µ, t) ≡
(
∂Q

∂µ

)

t

is calculated from the analytic form of Q(µ, t). There are
two more unknowns : ψ(t) and µ(q, t); they fulfil a sys-
tem of differential equations of first order with boundary
conditions :
(
∂µ

∂q

)

t

=
ψ

θ
,

(
∂ψ

∂q

)

t

= 0, with
{
q = 1, µ = 0
q = n, µ = µb.

The differential equations of internal structure and of
atmosphere, written with respect to q, are detailed in
Paper I. The equations are then solved on an equidistant
grid, that allows numerical optimisations.

Choice of Q. Q should be a strictly monotonous, two
times differentiable, function, and as simple as possible.
By experiments, it has been found that the most conve-
nient compromise is:

Q = ∆ξξ +∆ηη +∆µµ, ∆ξ = ∆η = −1, ∆µ = 15.

where ξ and η have been defined above.

Mesh refinement. The initial value of C(t) is fixed ac-
cording to the expected level of accuracy. Along the evo-
lution, its value is kept within ±2%, of its initial value,
by increasing (or decreasing) the total number of shells.

Setting a grid point on a LMR. At the limit between
a mixed zone and a radiative zone, the chemicals may
have a singularity. Therefore each LMR needs to coincide
precisely with a grid point. Doing that, cesam uses a
weighted repartition function. On each side of a LMR,
the weights are computed in such a way that they adjust,
locally, the values of C(t) to the amounts just needed
for iteratively “pushing” the closest grid point on the
limit. In most cases, including mixing, the LMR achieve
locations at distances from the closest grid points lesser
than a few percent of the characteristic local grid size.
The more well defined the location of the LMR is, the
most efficient the algorithm is.

The grids. cesam uses several grids for the B-splines
representations of quasi-static variables, atmosphere and
rotation variables. As it coincides with the adjustable grid
of quasi-static variables, the Lagrangian grid used for
the abundances of chemicals, is not fixed with respect
to time. There is the possibility to use a “fixed grid”, to
avoid the numerical diffusion resulting from the variable
Lagrangian grid.
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4 Atmosphere.

The atmosphere connects the convective optically thick
external part of the envelope to the optically thin inter-
stellar medium. In the internal structure, the diffusion
approximation (Kippenhahn & Weigert, 1991) is used to
simplify the calculation of the radiative flux. In the out-
ermost parts, this approximation is no longer valid, as
soon as the Rosseland optical depth becomes lesser than
' 10. Therefore, a special treatment is needed for the
restoration of the atmosphere.
cesam restores the atmosphere from a T (τ, Teff , g) law
here, τ is the Rosseland optical depth, Teff the effective
temperature and g the gravity. The stellar radius, R?,
is defined as the bolometric one, i.e. the radius at the
level where the local temperature is equal to Teff (Morel
et al., 1994). For genuine radiative T (τ) laws, whatever
Teff , τ? is located at a fixed optical depth, e.g. τ? = 2/3
for the Eddington’s law. For more precise laws, τ? has
not a fixed value. Therefore, the location where τ? is de-
fined is a free boundary.
As oscillation modes are reflected in the outermost parts
of stars, the pressure, the temperature and their gradi-
ents should be continuous at the limit with the envelope.
The continuity of the pressure gradient is trivially in-
sured by the equation of quasi-static equilibrium verified
in both sides of the limit.
The continuity of the temperature gradient is more in-
tricate to fulfil as the connection occurs in zones of con-
vective instability. For the restoration of the atmosphere,
the temperature gradient is derived from the T (τ) law
itself. Fixing the gravity the T (τ) law is expressed as :
T 4 = 3

4T
4
efff(τ).

Using dτ = −κρdr and ∇rad =
3

16πacG
PκL

MT 4
,

after some calculations :

∇ ≡ d lnT
d lnP

=
Pκ

T

dT
dτ

R2

GM
= (2)

3
16πacG

PκL?

MT 4

(
R

R?

)2 df
dτ

= ∇rad
L

L?

(
R

R?

)2 df
dτ

Here, κ is the Rosseland mean opacity, ρ the density, a
the radiation constant, G the gravitational constant, L?

the luminosity of the star, c the speed of light and ∇rad

the radiative gradient. In principle, the continuity is en-
sured when the same convection theory prevails in both
sides. As in most cases, the values differ, the continu-
ity of the temperature gradient is insured by a weighted
mean with respect to ln τ .
Eq. (2) is no longer valid for a genuine radiative T (τ) law,
as it ignores the convection. In such a case, according
to the prescription of Henyey et al. (1965) (M. Gabriel,
J. Christensen-Dalsgaard, priv. comm.), the temperature
gradient, in the convective atmosphere, is computed with
a modified radiative gradient :

∇∗rad = ∇rad
df

dτ
.

For a genuine radiative T (τ) law :

lim
τÀ1

df

dτ
= 1,

therefore, at the limit between the atmosphere and the
envelope, the radiative gradient is continuous and, con-
sequently, the convective temperature gradient.
The numerical integration of the differential equations
fulfilled in the atmosphere is made by collocation, see
Paper I for details. The number of shells in the atmo-
sphere is fixed from 50 to 100 according to the level of
accuracy required.

5 Evolution of the internal structure.

Initial PMS model. The energy source in an initial PMS
model is only of gravitational origin. At the onset of the
Hayashi track, the star is fully convective, therefore isen-
tropic and chemically homogeneous. The energy equa-
tion is reduced as in (Iben, 1965) :

∂L

∂M
= εG = −T ∂S

∂t
= cT (3)

where c(t) is the “contraction constant”, and S the en-
tropy. Along the interval of time ∆t, the energy radiated
equals the change of gravitational energy, therefore, at
first order :

L(t) + L(t+∆t)
2

∆t ∼
(

GM2

R(t+∆t)
− GM2

R(t)

)
⇒

∆t ∼ 2GM2 [R(t)−R(t+∆t)]
(L(t) + L(t+∆t))R(t)R(t+∆t)

.

here R(t) is the stellar radius. An estimate of the ini-
tial time step is deduced of two models computed with
Eq. (3), and with close values of the contraction con-
stant, c(t) and c(t + ∆t). cesam uses : c(t + ∆t) =
1.1× c(t). With c(t) = 0.02cgs the temperature at cen-
tre around 100 000K; it is ten times larger with c(t) =
0.00008cgs. Changes of the contraction constant allows
to make choice between initial PMS models. Most of
the PMS models can be initialised with the preliminary
model in ASCII available in the directory EXPLOIT.
cesam assumes that a PMS model becomes a ZAMS
model as soon as the release of gravitational energy bal-
ance the thermonuclear nuclear one. Such a model is
chemically inhomogeneous.

Initial homogeneous ZAMS model. A model of ZAMS
with homogeneous chemical composition is not a physi-
cal reality as the nuclear engine does not work at equilib-
rium. However, it is a very convenient short way as, after
a few time steps, the model is very close to the model
at the end of the PMS. Several ZAMS initial models in
ASCII are available in the directory EXPLOIT.
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6 Evolution of chemicals.

6.1 The nuclear networks.

At the onset of the computations, the abundances of
chemicals are initialised according to the initial hydro-
gen and helium mass ratios, and mixture. The initial
abundance of each chemical species is split between its
isotopes, according to the isotopic ratios of nuclides.
Several mixtures are implemented, the most useful are :
the Anders & Grevesse (1989) meteoritic mixture, the so-
lar mixtures of Grevesse & Noels (1993) and of Grevesse
& Sauval (1998). In case of need, a IDF allows to modify
the initial abundances of specific species, even the use of
a mixture not yet implemented.
Up to 16 nuclear networks are presently available. Hence,
one can follow the evolution using only the chemical
species and the thermonuclear reactions of interest.
The nuclear reaction rates are tabulated on relevant in-
tervals of temperatures. The rates are computed using
the formulas of, either Caughlan & Fowler (1988), or
NACRE Angulo et al. (1999) compilations. For the solar
models, some improved rates of Adelberger et al. (1998)
are also available.
The weak screening of Salpeter (1961) and the weak and
intermediate screenings of Mitler (1997) are available.

6.2 Evolution without diffusion.

The time scales of the unknowns involved in the tem-
poral evolution of chemicals, differ by a large number
of magnitudes. From a mathematical point of view, it
is a stiff problem (Hairer & Wanner, 1991). Algorithms
have been especially designed for their solution. Without
microscopic diffusion, L-stables (Hairer & Wanner, 1991,
par. 4.3) implicit Runge-Kutta schemes, are available for
the chemical evolution.
In the radiative zones, the equations to be solved are
formally written :
∂xi

∂t
= Ψi(P, T,X , t), 1 ≤ i ≤ nX. (4)

Here, xi is the abundance per mole of the chemical species
labelled by i, Ψi is the rate of change of xi, X is the vector
of chemical abundances, t the time and nX the number
of chemicals; xi is given by :

xi =
Xi

νi
,

Xi is the abundance mass fraction and νi the atomic
mass. In mixed zones (hereafter MZ), i.e. convective ed-
dies homogenise the chemical composition. There, the
mixing and the updating of chemicals are done simulta-
neously, therefore the changes of mean abundances write :

dx̄i

dt
=

∫

MZ

Ψi(P, T, X̄ , t)dM
/∫

MZ

dM. (5)

As a grid point is defined on each LMR (see Sect. 3.1),
the discontinuities of the abundances are explicitly cal-
culated.

Control of the accuracy. A good estimate of the nu-
merical accuracy of an integration is obtained with the
Fehlberg method (Stoer & Bulirsch, 1979, par. 7.5.2).
It needs to triple the calculations. As it is prohibitive,
falling anything better, the time step is simply adjusted
in such a way that, over a time step, the relative changes
of the abundances remain within fixed limits. The largest
the expected accuracy is, the narrower the limits are.

6.3 Evolution with diffusion.

With microscopic diffusion, the equations of the evolu-
tion of chemicals have the form :
∂xi

∂t
=
∂Fi

∂M
+

(
∂xi

∂t

)

nucl.

(6)

Fi = 4πR2ρ
(
4πR2ρDi • ∇MX + vixi

)

here, ∇ is the gradient operator and vi the advection
velocity. The symbol “•” means the vector inner product
and :

∇MX =
(
∂x1

∂M
, . . . ,

∂xnX

∂M

)T

.

The turbulent diffusion coefficients, are added to the i-th
component of the vector, Di, of diffusion coefficients of
the species i, (c.f. Eq. (16)).
For the integration, the abundances are approached by
piecewise polynomials expressed on a B-spline basis with
discontinuous derivatives at each LMR. A finite-elements
method (see e.g. Quarteroni & Valli, 1994) is used to
solve the diffusion equation. That allows an integration
by parts which reduces to unity the order of the diffusion
equation. The scheme is fully implicit. The nuclear term
is evaluated as for the implicit Euler’s formula.
The mixing is made by turbulent diffusion with coeffi-
cient DMZ >> 1. At each LMR, the abundances xi and
the fluxes Fi are continuous functions with discontinuous
first derivatives, owing to the jumps of the diffusion co-
efficients. Therefore Eq. (6) holds everywhere. Two for-
malisms are available for the calculation of the diffusion
vector Di :
– The coefficients are calculated according to Michaud

& Proffitt (1993). The metals are “test elements”,
their diffusion only results from collisions against pro-
tons. Based on the presence of protons, this formalism
is only valid for the main sequence.

– The diffusion coefficients are computed according to
Burgers (1969), this formalism is outlined beneath.

Boundary conditions. At the outermost limit,M = Mext,
it is assumed that there is neither input nor output of
matter, then Fi(Mext) = 0 for any particle i. At centre
M = 0, because of the spherical symmetry, Fi(0) = 0.
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Control of the gravitational settling. For stellar models
with mass larger than ≈ 1.4M¯, the use of microscopic
diffusion alone, produces at the surface an important
depletion for helium and heavy elements, and a con-
comitant enhancement of the hydrogen content. Different
ways to overcome this problem have been used. Eggen-
berger et al. (2005), introduces some turbulence due to
rotation. Di Mauro (2004) suppresses diffusion in the
outer layers. Chaboyer et al. (1999) includes a wind mass
loss which reduces the diffusion in outer layers, Turcotte
et al. (1998) introduces a turbulent mixing. With ce-
sam there is the possibility to control the gravitational
settling, by a radiative turbulence of coefficient dν pro-
portional to the radiative kinetic viscosity; it results from
the energy exchanges between thermal collisions leading
to excitation and ionisation of atoms and ions (Thomas
(1930), Mihalas & Weibel-Mihalas (1984, p. 461-472)).

dν = Reν
4
15

aT 4

cκρ2
, (7)

c is the speed of light in vacuum. The phenomenological
parameter, Reν , has been found close to unity by Morel
& Thévenin (2002). The physical meaning of this, as
efficient as simple source of turbulent mixing, has been
very questioned by Alécian & Michaud (2005).

Burgers’s flow equations. With respect to the abscissa x,
the density number ni and wi, the diffusion velocity of
the particle i, are related by (Iben & MacDonald, 1985) :
∂ni

∂t
=

1
x2

∂

∂x
(x2niwi) +

(
∂ni

∂t

)

nucl.

,

With the formalism of Burgers (1969), the diffusion ve-
locity is expressed as :

wi =
∑

j

bij
∂xj

∂x
+ vi.

bij , the diffusion coefficient of the particle i with respect
to the particle j and vi, the advection velocity, come from
the solution of a linear system. The diffusion velocities,
for ions and electrons, (Burgers, 1969; Cox et al., 1989;
Thoul et al., 1994), satisfy5 :
dPi

dR
− ρi

ρ

dP

dR
− niz̄ieE =

∑

j

Kij(wj − wi) +

+
∑

j

Kijzij
mjri −mirj
mi +mj

(8)

5
2
nik

dT

dR
= − 5

2

∑

j

Kijzij
mj(wj − wi)
mi +mj

− 2
5
Kiiz

′′
iiri

− ri
∑

j 6=i

Kij

3m2
i +m2

jz
′
ij + 4

5mimjz
′′
ij

(mi +mj)2

+
∑

j 6=i

Kij

mimj(3 + z′ij − 4
5z
′′
ij)

(mi +mj)2
rj . (9)

5 Without conduction current and magnetic field.

Here e is the electron charge, E the electric field, Pi the
partial pressure, mi = νimu is the mass of the particle i,
k the Boltzmann constant, and ri the magnitude of the
residual heat flow vector; ρi, the partial density, is given
by :

ρi = ρXi = ρxiνi = niνimu, (10)

with N0 as the Avogadro number, the inverse of the
atomic mass unit mu :

ni = ρN0
Xi

νi
= ρN0xi. (11)

The force equation (8) represents the pressure and the
concentration dependence of the diffusion velocity, while
Eq. (9) prevails for its thermal dependence. The charge
of any isotope is taken as the averaged6 charge, z̄i, over
all its ionisation states. An unique mean charge is used
for all the isotopes of a given chemical. The quantities
Kij are the so-called resistance coefficients, they repre-
sent the effects of collisions between particles i and j
(Michaud & Proffitt, 1993) :

Kij =
16
3
ninjmijΩ

(11)
ij , (12)

with mij = (mimj)/(mi + mj) as the reduced mass of
particles i and j. The heat flux terms involve additional
collision integrals :

zij = 1− 2
5
Ω

(12)
ij

Ω
(11)
ij

,

z′ij = 2.5− 2
5

5Ω(12)
ij −Ω

(13)
ij

Ω
(11)
ij

, z′′ij =
Ω

(22)
ij

Ω
(11)
ij

,

Paquette et al. (1986) has shown that Ω(kl)
ij , can be writ-

ten :

Ω
(kl)
ij ≡ F

(kl)
ij εij , (kl) = (11), (12), (13), (22),

εij ≡ e4

4

√
π

2k3

z̄i
2z̄j

2

√
mij

1√
T 3
.

For attractive and repulsive screened Coulomb poten-
tials, the quantities ln(F (kl))ij have been tabulated by
Paquette et al. (1986). The equations of dynamical con-
servation of the mass and charges respectively are :
nX∑

i=1

xiνiwi = 0,
nX+1∑

i=1

z̄ixiwi = 0, (13)

where nX + 1 is the index of electrons. Following Pa-
quette et al. (1986) and earlier works, e.g. Iben & Mac-
Donald (1985), Cox et al. (1989), Thoul et al. (1994),
the diffusion velocities wi come from the solution of the
system of 2nX + 3 linear equations, formed by the 2nX

Eq. (8) and Eq. (9) for the ions, the Eq. (9) for the

6 Weighted by the ionisation rates.
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electrons and the two Eq. (13). The 2nX + 3 unknowns
are wi, i = 1, . . . , nX + 1, ri, i = 1, . . . , nX + 1 and E.
For want of something better, with the ideal gas law, the
pressure and the partial pressures respectively are :

P =
ρRT
µ

, Pi = nikT = ρxiN0kT = Pµxi, (14)

here R as the perfect gas constant, and µ the mean
molecular weight. In spherical symmetry, the pressure
and the temperature gradients are given by :

dP

dR
= −ρg, dT

dR
=
T

P
∂ lnT
∂ lnP

dP
dR

= −T
P
∇ρg. (15)

Working with Eq. (10) to Eq. (15), with respect to µ and
xi, the Burgers’s equations (8), (9), may be rewritten :

Aω = γ +GDx, Dx = (
∂x1

∂R
, . . . ,

∂xnX

∂R
, 0, . . . , 0)T .

The solutions are :

ω = V +BDx, V = A−1γ, B = A−1G.

For abridgment, neither the derivation of above equa-
tions, nor the complicated forms of vector γ and matrix
A and G, are reproduced, all details are given in Paper 3.
The diffusion velocities of the ions are expressed as :

wi =
nX∑

j=1

bij
∂xj

∂R
+ vi, i = 1, . . . , nX ,

and, owing to Eq. (11), the diffusion vector writes :

Di = (xibi1, . . . , xibinX
)T , (16)

for i, j = 1, . . . , nX , bij and vi, are respectively the coef-
ficients of matrix B and vector V .

Calculation of mean charges. The Burgers formalism in-
volves the charges of the isotopes. To simplify, cesam
considers a unique mean charge for all the isotopes of
each chemical. For the calculation of the ionisation rates,
the Saha-Boltzmann equation (Cox & Giuli, 1968, eq.15-
30) has been adapted in the following way. Let nj,i be
the number density of atoms in ionisation state j of the
chemical species i. The ratio of the total number of atoms
in successive stages of ionisation can be written :

nj−1,i

nj,i
=
Uj−1,i

Uj,i
exp

(
η +

χj,i

kT

)
, (17)

here χj,i is the ionisation potential, Uj,i the partition
function and η the electron degeneracy, related to the
number density of free electrons and temperature, through
the half integer Fermi-Dirac function (Clayton, 1968, eq.
2-57). Eggleton et al. (1973) have introduced a conve-
nient approximate treatment of the pressure ionisation.
It is postulated a numerical correction, to ensure that the
plasma remains completely ionised at sufficiently high
density. In the inner solar radiative zone, this approxi-
mate treatment of the pressure ionisation leads to too
large mean charges for the ions and, at the centre, the

Table 1 Beneath the convection zone and at centre, for a
calibrated solar model, comparison between the mean charges
from the approximate solution and the precise equation of
state of Gabriel (1997) (label “G”).

T=2.2MK centre

elements Z̄G Z̄ Z̄G Z̄

C 5.89 5.92 6.00 6.00
N 6.75 6.82 7.00 7.00
O 7.47 7.56 8.00 8.00
Fe 17.0 16.7 24.2 24.2

iron is fully ionised, while it is only 85% according to
Table 1 in Gabriel (1997). About the same behaviour is
observed with the modified parameters recommended by
Proffit & Michaud (1991, eq. 4).
In cesam, the partition functions are limited to the sta-
tistical weights of fundamental levels and, as soon as the
mean distance between the ions becomes of the order
of the size of the ion cloud, RD, the ratio of statistical
weights is smoothly reduced to zero. The Debye-Huckel
radius writes (Clayton, 1968, eq. 2-235) :

RD =

√
kT

4πe2ρN0ζ
, ζ =

∑

i 6=e

z̄i(z̄i + 1)xi,

The Saha-Boltzmann Eq. (17) is then written :
nj−1,i

nj,i
=
gj−1,i

gj,i
f(x) exp

(
η +

χj,i

kT

)
, (18)

x =
χi,j

χ′j,i
− 1, χ′j,i = max(0, χi,j − χC

i,j), χC
i,j =

je2

RD
,

the gj,i are the statistical weights of fundamentals. For
the smoothing function f(x), cesam uses the piecewise
cubic polynomial with zero derivatives at x = 0 and
x = p (p = 4) :

f(x) =





0 if x ≤ 0,(
x
p

)2 [
−2

(
x
p

)
+ 3

]
if x ∈ [0, p],

1 if x ≥ p,

Then, as soon as χi,j ≤ χC
i,j , the quantity gj−1,i/gj,if(x)

goes to zero and the level j − 1 becomes fully ionised.
The set of Saha-Boltzmann equations for all ions is writ-
ten as in Mihalas (1978, eq. 5-17). They are solved by
iterations using a second order Newton-Raphson scheme.
For the mean charges, quantities of main interest in the
present investigation, Table 1 reveals agreements better
than ±3% with the data of Table 1 of Gabriel (1997).

7 Rotation.

Within the assumption of spherical symmetry, the rota-
tion can be considered in cesam. With non zero angu-
lar velocity, the mean centrifugal acceleration affects the
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local gravity. In the initial model a rigid rotation is as-
sumed. The initial angular velocity can be read from the
IDF in different units:
– radian/s.
– km/s, that corresponds to the rotational velocity of

the external part of the star. As the external radius
depends on the external gravity, the initial model
needs to be iteratively adapted to have the required
external velocity.

– days, that corresponds to the rotation period.

7.1 Rotation without diffusion of angular momentum.

Several options are available:
– no rotation, the initial angular velocity needs also to

be zero.
– solid-body rotation with angular velocity is kept to

its initial value.
– the rotation is solid and the angular momentum is

globally conserved. The angular velocity changes with
respect to time, according to structural changes.

– the angular velocity changes according to the conser-
vation of the local angular momentum. The rotation
is not solid, but in the mixed zones.

7.2 Rotation with diffusion of angular momentum.

The two formalisms Talon et al. (1997) and Mathis &
Zahn (2004) of the diffusion of angular momentum (β)
are implemented in cesam. The diffusion coefficients of
the angular momentum are computed according either
to Palacios et al. (2003) or to Mathis et al. (2004).

8 Mass loss and infall of planetoids.

Several formalisms of mass loss are implemented in ce-
sam. The mass loss rate is either negative or positive,
i.e. increase of mass. With diffusion, the chemical com-
position of the input (resp. output) can differ from those
of the external convective zone, from where the output
(resp. input) is assumed to come from (resp. vanish). The
mass loss rate, in unit of M¯.yr−1 is read in the IDF.
The following kinds of mass loss are implemented :
– standard mass loss.
– solar mass loss, the mass loss is halted as soon as the

mass of the model reaches the solar value.
– changes of mass due to the thermonuclear energy gen-

eration.
– infall of planetoids (β). The characteristics of the in-

fall, amount of terrestrial masses, duration of the in-
fall, chemical composition of the planetoids, are read
in a IDF.

Losses of angular momentum are implemented but still
in validation (β).

9 Convection.

Two main formalisms for the computation of the temper-
ature gradient in the convection zones are available : the
standard Böhm-Vitense (1958) mixing-length formalism
is considered with the optical thickness of the convec-
tive bubble and the Canuto & Mazzitelli (1991) formal-
ism. For both, the mixing-length is a free parameter read
in the IDF. Other descriptions of the mixing length are
available.
Overshooting beneath and/or above the convection zones
are allowed for. The overshooting parameters, scaled by
the local pressure scale height, are free parameters and
read in the IDF. In the overshooted parts, the temper-
ature gradient is set, either to the adiabatic one, or to
the radiative gradient. The convective zones and their
extents by overshooting are homogenised, see Sect. 6.2.
Up to now specialised treatment of the semi-convection
is not implemented in cesam. With microscopic diffu-
sion, in areas swept across by the backward movement
of the border of a convective core, the discontinuities of
chemicals are assumed to be eroded only by the diffu-
sion. Without diffusion (β), the profiles of abundances
are spatially linearly interpolated between their values
on the convective core and at the former location of
the LMR. That avoids a noisy behaviour of chemical
gradients and, consequently, of the profile of the Brunt-
Väissälä frequency.

10 Equation of state and opacity.

Four analytical equations of state are implemented in
cesam. The most useful are eff (Eggleton et al., 1973)
and ceff (Christensen–Dalsgaard & Dappen, 1992).
Numerical EOS are also available. The mhd tables (Mi-
halas et al., 1988) and the opal 1993 and opal 2001
tables are used with the OPAL interpolation scheme for
tables with Z = 0.01 and Z = 0.02.
OPAL 1996 opacity tables are implemented, with Kurucz
low-temperature values. The ratios between the abun-
dances of heavy-elements are fixed at their initial values,
regardless of changes due to nuclear reactions and dif-
fusion. All OPAL tables of type 2, available today, are
implemented altogether with z14xcotrin21 the pack-
age of A.I. Boothroyd.
Only the neutrinos generated by the nuclear reactions are
taken into account, it is assumed that they can freely es-
cape out of the star. Other physical processes related to
neutrino such as Urca process, plasmaneutrino, plasma-
neutrino (Kippenhahn & Weigert, 1991, par. 18.6) have
only been implemented in private codes derived from ce-
sam.
For temperature values above T ≥ 7 107K ' 7Kev, the
plasma is fully ionised, so the Rosseland mean opacity
is reduced to the Compton scattering by free electrons
(Cox & Giuli, 1968, par. 16.6).
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Table 2 The different sets of parameters used for the calibration of solar models with the CESAM2k code. We used (i) two
solar heavy elements mixtures, the GN93 (Grevesse & Noels, 1993) or the AGS05 (Asplund et al., 2005) mixture; (ii) two
formalisms for the treatment of convection, the BV (Böhm-Vitense, 1958) and CGM (Canuto et al., 1996) formalism, (iii)
two T (τ) laws for the atmosphere, the classical Eddington grey law and T (τ) laws derived from ATLAS9 model atmospheres
(Kurucz, 1992) calculated with the same convection formalism as the interior models (see Samadi et al., 2006) and (iv) two
formalisms for the calculation of the microscopic diffusion of the elements, the MP93 (Michaud & Proffitt, 1993) and B69
(Burgers, 1969) formalism.

Model Mixture Convection T(τ) law Diffusion

A GN93 BV ATLAS9 MP93
B GN93 BV EDDINGTON MP93
C GN93 BV ATLAS9 B69
D GN93 CGM ATLAS9 MP93
E AGS05 BV EDDINGTON MP93

Table 3 Properties of the five CESAM2k calibrated solar models. Y0, Z0 and (Z/X)0 are the initial values of the helium
and heavy elements mass fractions and (Z/X) ratio. Ye, Ze are the present values in the convective envelope while Re is the
radius at the basis of the convective envelope in units of the solar radius. ρc, Tc and Xc are the central values of the density
in g.cm−3, temperature in 106 K and hydrogen abundance. αconv,int is the value of the convection parameter in the interior
(α = l/Hp where l is the mixing length and Hp is the pressure scale-height)

Model Y0 Z0 (Z/X)0 Ye Ze Re ρc Tc Xc αconv,int

A 0.2735 0.0196 0.0278 0.2447 0.0181 0.7143 153.1 15.72 0.3387 2.42
B 0.2735 0.0196 0.0278 0.2447 0.0181 0.7145 153.1 15.72 0.3387 1.76
C 0.2741 0.0198 0.0280 0.2460 0.0180 0.7152 153.0 15.72 0.3388 2.40
D 0.2735 0.0196 0.0278 0.2447 0.0181 0.7143 153.1 15.72 0.3387 0.77
E 0.2637 0.0141 0.0196 0.2339 0.0129 0.7297 151.0 15.52 0.3578 1.72

0 0.2 0.4 0.6 0.8 1
r/RSUN

-0.005

0

0.005

0.01

0.015

δc
/c

A
B
C
D
E

Figure 1 Relative differences between the seismic sound
speed derived by Basu et al. (2000) and the solar models
presented in Table 2.

11 Calibration of the Solar model.

We have performed several calibrations of the solar model
with CESAM2k with different sets of input physics and
initial parameters. The calibration of the solar model

consists in adjusting the initial parameters of the model
(initial helium abundance and mixing-length parameter)
in order to satisfy the observational constraints on the
solar global parameters at solar age.

We have adopted the values of the astronomical and
physical constants specified for the calculation of the stel-
lar models compared in the different ESTA tasks (see
Lebreton et al., 2007). For the solar global parameters,
we therefore took R¯ = 6.9599 1010 cm (solar radius),
L¯ = 3.846 1033 erg.s−1 (solar luminosity) and M¯ =
1.98919 1033 g (solar mass). The value R¯ refers to the
radius of the model layer where T = Teff = 5777 K.
For the solar age, following Bahcall & et al. (1995), we
adopted the value t¯ = 4.57 Gyr.

Table 2 presents the various sets of input physics used
in the different calibrations of solar models. All models
have been calculated with the OPAL 2001 equation of
state (Rogers & Nayfonov, 2002) and the 1995 OPAL
interior opacities (Iglesias & Rogers, 1996). Two sets of
low temperature opacities have been used: the Alexan-
der & Ferguson (1994) tables given for the Grevesse &
Noels (1993) solar heavy elements mixture and the Fer-
guson et al. (2005) tables given for the new solar mixture
derived by Asplund et al. (2005) (see below). All models
take into account the microscopic diffusion of chemical
elements due to pressure, temperature and concentration
gradients (no radiative accelerations) but we considered
either the Michaud & Proffitt (1993, hereafter MP93) or
the Burgers (1969, hereafter B69) formalism. Convection
is treated either according to the classical mixing-length
theory (Böhm-Vitense, 1958, hereafter BV) or to the
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Canuto et al. (1996, hereafter CGM) formalism. In the
CGM formalism, like in the the CM formalism (Canuto
& Mazzitelli, 1991), the contribution of eddies with dif-
ferent sizes is taken into account in the calculation of
the convective flux and velocity. In addition Canuto et
al. (1996) take into account the feedback of the turbu-
lence on the energy input from the source which gener-
ates turbulent convection. For the atmosphere calcula-
tion we considered either the classical Eddington grey
T (τ)-law or a T (τ)-law derived from Kurucz’s ATLAS 9
1-D model atmospheres (Kurucz, 1992). We have taken
the same T (τ)-laws as used in the work by Samadi et
al. (2006). These laws are based on model atmospheres
calculated with either the BV or the CGM convection
formulation. In both cases, the atmosphere calculation
was performed adopting a value of the mixing-length
parameter αconv,atm = 0.5 which allows to fit at best
the observed profiles of the solar Balmer lines (see van’t
Veer-Menneret and Megessier, 1996). Therefore αconv,atm

is different from the value of αconv,int in the interior,
this latter being adjusted to calibrate the solar model.
Concerning the heavy elements mixture we adopted the
GN93 solar mixture of heavy elements (Grevesse & Noels,
1993) in all models but one where we used the new
AGS05 solar mixture (Asplund et al., 2005) which is de-
rived from a time-dependent, 3-D hydrodynamical model
of the solar atmosphere. The abundances of C, N, O of
the AGS05 mixture are smaller than in the GN93 mix-
ture which in turn leads to an important decrease of the
solar (Z/X) ratio: (Z/X)¯ = 0.0245 for the GN93 mix-
ture and (Z/X)¯ = 0.0171 for the AGS05 mixture.

Table 3 presents the results of the solar model cal-
ibrations. The relative differences in radius, luminosity
and present (Z/X) surface value of the five models A,
B, C, D, E with the observed values are lower than
10−4. The relative differences between the seismic sound
speed derived by Basu et al. (2000) and the models are
plotted in Fig. 1. The helioseismically measured values
of the present radius at the base of the convective en-
velope Re,o and of the present solar envelope helium
abundance Ye,o provide strong constraints for the so-
lar model. Basu & Antia (1997) helioseismically derived
Re,o = 0.713± 0.001R¯. Boothroyd & Sackmann (2003)
derived a mean value Ye,o = 0.245 ± 0.005 from differ-
ent helioseismic determinations. In all our models but
one (model E), we find values of Ye and Re in reason-
able agreement with the seismic values. Model E is based
on the AGS05 solar mixture which makes the agree-
ment between the solar model and helioseismic observa-
tions much worse (see for instance Basu & Antia, 2004).
More details on the solar models calculated with cesam
and their seismic properties can be found in Morelet al.
(1999); Provostet al. (2000); Zaatri et al. (2007).
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B. Pichon, J. Provost, F. Thévenin, C. van’t Veer, J.P. Zahn.
We acknowledge J. Christensen-Dalsgaard and M. Gabriel
for private communications. Many stimulating and helpful
discussions with : G. Alecian, N. Audard, A.I. Boothroyd, R.
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